2D bifurcation problem
Solution 1:
Hint.
Analyzing the intersections of
$$ \cases{ x-x y+1 =0\\ \lambda y +x^2=0 } $$
we can foresight the equilibrium points qualification.
For $\lambda \approx -1 $
For $\lambda\approx -5$
Here the tangency point is solved easily as follows
$$ \lambda x+x^3+\lambda = (x-x_1)^2(x-x_2) $$
so equating to zero the $x$'s powers coefficients
$$ \cases{ \lambda+x_1^2x_2 = 0\\ \lambda -x_1^2-2x_1x_2 = 0\\ 2x_1+x_2=0 } $$
we get $x_1 = -\frac 32, x_2=3, \lambda = -\frac{27}{4}$
For $\lambda\approx -35$
For $\lambda \approx 1$
NOTE
For $\lambda > 0$ we have one equilibrium point.
For $-\frac{27}{4}<\lambda< 0$ we have one equilibrium point.
For $\lambda < -\frac{27}{4}$ we have three equilibrium points.
For a given equilibrium point $(x_0,y_0)$ the Jacobian is
$$ J=\left( \begin{array}{cc} 1-y_0 & -x_0 \\ 2 x_0 & \lambda \\ \end{array} \right) $$
with eigenvalues
$$ \frac 12\left(\lambda+1-y_0\pm\sqrt{(y_0-1+\lambda)^2-8x_0^2}\right) $$