Show that for every set $A \subset \mathbb R^n$ lebesgue measurable $\int_{A} f_n dx\rightarrow \int_{A} f dx.$ [closed]
Solution 1:
Note that \begin{eqnarray*} & & |f_{n}|\\ & = & |\left(f_{n}-f\right)+f|\\ & \leq & \left|f_{n}-f\right|+\left|f\right|. \end{eqnarray*} Therefore, $|f_{n}|-|f|-|f_{n}-f|\leq0\leq2|f|$. On the other hand, \begin{eqnarray*} & & \left|f_{n}-f\right|\\ & \leq & |f_{n}|+|f|, \end{eqnarray*} re-arranging terms yields $|f_{n}|-|f|-|f_{n}-f|\geq-2|f|$. It follows that $$\left||f_{n}|-|f|-|f_{n}-f|\right|\leq2|f|.$$
Observe that $|f_{n}|-|f|-|f_{n}-f|\rightarrow0$ pointwisely a.e.. By Lebesgue Dominated Convergence Theorem, we have that $$ \int\left(|f_{n}|-|f|-|f_{n}-f|\right)dm\rightarrow0. $$ It is given that $\int\left(|f_{n}|-|f|\right)dm\rightarrow0$, so $\int|f_{n}-f|dm\rightarrow0$. In particular, for any measurable set $A$, $\left|\int_{A}f_{n}dm-\int_{A}fdm\right|\leq\int_{A}|f_{n}-f|dm\leq\int|f_{n}-f|dm\rightarrow0$.