What are 'closures' in .NET?

What is a closure? Do we have them in .NET?

If they do exist in .NET, could you please provide a code snippet (preferably in C#) explaining it?


I have an article on this very topic. (It has lots of examples.)

In essence, a closure is a block of code which can be executed at a later time, but which maintains the environment in which it was first created - i.e. it can still use the local variables etc of the method which created it, even after that method has finished executing.

The general feature of closures is implemented in C# by anonymous methods and lambda expressions.

Here's an example using an anonymous method:

using System;

class Test
{
    static void Main()
    {
        Action action = CreateAction();
        action();
        action();
    }

    static Action CreateAction()
    {
        int counter = 0;
        return delegate
        {
            // Yes, it could be done in one statement; 
            // but it is clearer like this.
            counter++;
            Console.WriteLine("counter={0}", counter);
        };
    }
}

Output:

counter=1
counter=2

Here we can see that the action returned by CreateAction still has access to the counter variable, and can indeed increment it, even though CreateAction itself has finished.


If you are interested in seeing how C# implements Closure read "I know the answer (its 42) blog"

The compiler generates a class in the background to encapsulate the anoymous method and the variable j

[CompilerGenerated]
private sealed class <>c__DisplayClass2
{
    public <>c__DisplayClass2();
    public void <fillFunc>b__0()
    {
       Console.Write("{0} ", this.j);
    }
    public int j;
}

for the function:

static void fillFunc(int count) {
    for (int i = 0; i < count; i++)
    {
        int j = i;
        funcArr[i] = delegate()
                     {
                         Console.Write("{0} ", j);
                     };
    } 
}

Turning it into:

private static void fillFunc(int count)
{
    for (int i = 0; i < count; i++)
    {
        Program.<>c__DisplayClass1 class1 = new Program.<>c__DisplayClass1();
        class1.j = i;
        Program.funcArr[i] = new Func(class1.<fillFunc>b__0);
    }
}

Closures are functional values that hold onto variable values from their original scope. C# can use them in the form of anonymous delegates.

For a very simple example, take this C# code:

    delegate int testDel();

    static void Main(string[] args)
    {
        int foo = 4;
        testDel myClosure = delegate()
        {
            return foo;
        };
        int bar = myClosure();

    }

At the end of it, bar will be set to 4, and the myClosure delegate can be passed around to be used elsewhere in the program.

Closures can be used for a lot of useful things, like delayed execution or to simplify interfaces - LINQ is mainly built using closures. The most immediate way it comes in handy for most developers is adding event handlers to dynamically created controls - you can use closures to add behavior when the control is instantiated, rather than storing data elsewhere.


Func<int, int> GetMultiplier(int a)
{
     return delegate(int b) { return a * b; } ;
}
//...
var fn2 = GetMultiplier(2);
var fn3 = GetMultiplier(3);
Console.WriteLine(fn2(2));  //outputs 4
Console.WriteLine(fn2(3));  //outputs 6
Console.WriteLine(fn3(2));  //outputs 6
Console.WriteLine(fn3(3));  //outputs 9

A closure is an anonymous function passed outside of the function in which it is created. It maintains any variables from the function in which it is created that it uses.


Here is a contrived example for C# which I created from similar code in JavaScript:

public delegate T Iterator<T>() where T : class;

public Iterator<T> CreateIterator<T>(IList<T> x) where T : class
{
        var i = 0; 
        return delegate { return (i < x.Count) ? x[i++] : null; };
}

So, here is some code that shows how to use the above code...

var iterator = CreateIterator(new string[3] { "Foo", "Bar", "Baz"});

// So, although CreateIterator() has been called and returned, the variable 
// "i" within CreateIterator() will live on because of a closure created 
// within that method, so that every time the anonymous delegate returned 
// from it is called (by calling iterator()) it's value will increment.

string currentString;    
currentString = iterator(); // currentString is now "Foo"
currentString = iterator(); // currentString is now "Bar"
currentString = iterator(); // currentString is now "Baz"
currentString = iterator(); // currentString is now null

Hope that is somewhat helpful.