Fibonacci, tribonacci and other similar sequences
In addition to André's notes, another means of calculating solutions to these recurrence relations is to rephrase them using linear algebra as a single matrix multiply and then apply the standard algorithms for computing large powers of numbers (i.e., via binary representation of the exponent) to computing powers of the matrix; this allows for the $n$th member of the sequence to be computed with $O(\log(n))$ multiplies (of potentially exponentially-large numbers, but the multiplication can also be sped up through more complicated means).
In the Fibonacci case, this comes by forming the vector $\mathfrak{F}_n = {F_n\choose F_{n-1}}$ and recognizing that the recurrence relation can be expressed by multiplying this vector with a suitably-chosen matrix: $$\mathfrak{F}_{n+1} = \begin{pmatrix}F_{n+1} \\\\ F_n \end{pmatrix} = \begin{pmatrix}F_n + F_{n-1} \\\\ F_n \end{pmatrix} = \begin{pmatrix} 1&1 \\\\ 1&0 \end{pmatrix} \begin{pmatrix} F_n \\\\ F_{n-1} \end{pmatrix} = M_F\mathfrak{F}_n $$
where $M_F$ is the $2\times2$ matrix $\begin{pmatrix} 1&1 \\\\ 1&0 \end{pmatrix}$. This lets us find $F_n$ by finding $M_F^n\mathfrak{F}_0$, and as I noted above the matrix power is easily computed by finding $M_F^2, M_F^4=(M_F^2)^2, \ldots$ (note that this also gives an easy way of proving the formulas for $F_{2n}$ in terms of $F_n$ and $F_{n-1}$, which are just the matrix multiplication written out explicitly; similarly, the Binet formula itself can be derived by finding the eigenvalues of the matrix $M_F$ and diagonalizing it).
Similarly, for the Tribonacci numbers the same concept applies, except that the matrix is 3x3: $$\mathfrak{T}_{n+1} = \begin{pmatrix} T_{n+1} \\\\ T_n \\\\ T_{n-1} \end{pmatrix} = \begin{pmatrix} T_n+T_{n-1}+T_{n-2} \\\\ T_n \\\\ T_{n-1} \end{pmatrix} = \begin{pmatrix} 1&1&1 \\\\ 1&0&0 \\\\ 0&1&0 \end{pmatrix} \begin{pmatrix} T_n \\\\ T_{n-1} \\\\ T_{n-2} \end{pmatrix} = M_T\mathfrak{T}_n$$ with $M_T$ the $3\times3$ matrix that appears there; this is (probably) the most efficient all-integer means of finding $T_n$ for large values of $n$, and again it provides a convenient way of proving various properties of these numbers.
This is halfway between a comment and an answer. The Binet Formula (misattributed of course, it was known long before Binet) can only in a limited way be thought of as a formula "for computing" the $n$-th term of the Fibonacci sequence. Certainly it works nicely for small $n$. However, for even medium-sized $n$, it demands high-accuracy computation of $\sqrt{5}$. Ironically, such high accuracy computations of $\sqrt{5}$ involve close relatives of the Fibonacci sequence!
You can find a discussion of algorithms for computing the Fibonacci sequence at http://www.ics.uci.edu/~eppstein/161/960109.html.
A Binet-like expression for the "Tribonacci" numbers can be found at http://mathworld.wolfram.com/TribonacciNumber.html
However, the recurrence for the Tribonacci numbers, suitably speeded up, is a better computing method than the formula.