Python - Convert datetime column into seconds [duplicate]
I have a date column (called 'Time') which contains days/hours/mins etc (timedelta). I have created a new column in my dataframe and I want to convert the 'Time' column into seconds and put it in the new column for each row.
Does anyone have any pointers? All I can find on the internet is how to convert your column, not create a new column and convert another one.
Thank you in advance!
Solution 1:
I think you need total_seconds
:
print (df['col'].dt.total_seconds())
Sample:
df = pd.DataFrame({'date1':pd.date_range('2015-01-01', periods=3),
'date2':pd.date_range('2015-01-01 02:00:00', periods=3, freq='23H')})
print (df)
date1 date2
0 2015-01-01 2015-01-01 02:00:00
1 2015-01-02 2015-01-02 01:00:00
2 2015-01-03 2015-01-03 00:00:00
df['diff'] = df['date2'] - df['date1']
df['seconds'] = df['diff'].dt.total_seconds()
print (df)
date1 date2 diff seconds
0 2015-01-01 2015-01-01 02:00:00 02:00:00 7200.0
1 2015-01-02 2015-01-02 01:00:00 01:00:00 3600.0
2 2015-01-03 2015-01-03 00:00:00 00:00:00 0.0
df['diff'] = df['date2'] - df['date1']
df['diff'] = df['diff'].dt.total_seconds()
print (df)
date1 date2 diff
0 2015-01-01 2015-01-01 02:00:00 7200.0
1 2015-01-02 2015-01-02 01:00:00 3600.0
2 2015-01-03 2015-01-03 00:00:00 0.0
If need cast to int
:
df['diff'] = df['date2'] - df['date1']
df['diff'] = df['diff'].dt.total_seconds().astype(int)
print (df)
date1 date2 diff
0 2015-01-01 2015-01-01 02:00:00 7200
1 2015-01-02 2015-01-02 01:00:00 3600
2 2015-01-03 2015-01-03 00:00:00 0
Solution 2:
Let's assume your DataFrame's name is df
.
If you want to create a new column with the seconds you should do the following:
df['newColumn'] = df['Time'].dt.total_seconds()