"Parallel.For" for Java?
I was wondering if there is a Parallel.For equivalent to the .net version for Java?
If there is could someone please supply an example? thanks!
I guess the closest thing would be:
ExecutorService exec = Executors.newFixedThreadPool(SOME_NUM_OF_THREADS);
try {
for (final Object o : list) {
exec.submit(new Runnable() {
@Override
public void run() {
// do stuff with o.
}
});
}
} finally {
exec.shutdown();
}
Based on TheLQ's comments, you would set SUM_NUM_THREADS to Runtime.getRuntime().availableProcessors();
Edit: Decided to add a basic "Parallel.For" implementation
public class Parallel {
private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final ExecutorService forPool = Executors.newFixedThreadPool(NUM_CORES * 2, new NamedThreadFactory("Parallel.For"));
public static <T> void For(final Iterable<T> elements, final Operation<T> operation) {
try {
// invokeAll blocks for us until all submitted tasks in the call complete
forPool.invokeAll(createCallables(elements, operation));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static <T> Collection<Callable<Void>> createCallables(final Iterable<T> elements, final Operation<T> operation) {
List<Callable<Void>> callables = new LinkedList<Callable<Void>>();
for (final T elem : elements) {
callables.add(new Callable<Void>() {
@Override
public Void call() {
operation.perform(elem);
return null;
}
});
}
return callables;
}
public static interface Operation<T> {
public void perform(T pParameter);
}
}
Example Usage of Parallel.For
// Collection of items to process in parallel
Collection<Integer> elems = new LinkedList<Integer>();
for (int i = 0; i < 40; ++i) {
elems.add(i);
}
Parallel.For(elems,
// The operation to perform with each item
new Parallel.Operation<Integer>() {
public void perform(Integer param) {
System.out.println(param);
};
});
I guess this implementation is really more similar to Parallel.ForEach
Edit I put this up on GitHub if anyone is interested. Parallel For on GitHub
MLaw's solution is a very practical Parallel.ForEach. I added a bit modification to make a Parallel.For.
public class Parallel
{
static final int iCPU = Runtime.getRuntime().availableProcessors();
public static <T> void ForEach(Iterable <T> parameters,
final LoopBody<T> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (final T param : parameters)
{
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(param); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
public static void For(int start,
int stop,
final LoopBody<Integer> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (int i=start; i<stop; i++)
{
final Integer k = i;
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(k); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
}
public interface LoopBody <T>
{
void run(T i);
}
public class ParallelTest
{
int k;
public ParallelTest()
{
k = 0;
Parallel.For(0, 10, new LoopBody <Integer>()
{
public void run(Integer i)
{
k += i;
System.out.println(i);
}
});
System.out.println("Sum = "+ k);
}
public static void main(String [] argv)
{
ParallelTest test = new ParallelTest();
}
}
Built upon mlaw suggestion, add CountDownLatch. Add chunksize to reduce submit().
When tested with 4 million items array, this one gives 5X speed up over sequential for() on my Core i7 2630QM CPU.
public class Loop {
public interface Each {
void run(int i);
}
private static final int CPUs = Runtime.getRuntime().availableProcessors();
public static void withIndex(int start, int stop, final Each body) {
int chunksize = (stop - start + CPUs - 1) / CPUs;
int loops = (stop - start + chunksize - 1) / chunksize;
ExecutorService executor = Executors.newFixedThreadPool(CPUs);
final CountDownLatch latch = new CountDownLatch(loops);
for (int i=start; i<stop;) {
final int lo = i;
i += chunksize;
final int hi = (i<stop) ? i : stop;
executor.submit(new Runnable() {
public void run() {
for (int i=lo; i<hi; i++)
body.run(i);
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {}
executor.shutdown();
}
public static void main(String [] argv) {
Loop.withIndex(0, 9, new Loop.Each() {
public void run(int i) {
System.out.println(i*10);
}
});
}
}
Here is my contribution to this topic https://github.com/pablormier/parallel-loops. The usage is very simple:
Collection<String> upperCaseWords =
Parallel.ForEach(words, new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
});
It's also possible to change some behaviour aspects, like the number of threads (by default it uses a cached thread pool):
Collection<String> upperCaseWords =
new Parallel.ForEach<String, String>(words)
.withFixedThreads(4)
.apply(new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
}).values();
All the code is self-contained in one java class and has no more dependencies than the JDK. I also encourage you to check the new way to parallelize in a functional-style way with Java 8
Fork join framework in Java 7 is for concurrency support. But I don't know about an exact equivalent for Parallel.For
.