Why is $\sum\limits_{n=1}^{\infty}e^{-(n/10)^2}$ almost equal to $5\sqrt\pi-\frac12$ (agreeing up to $427$ digits)?

Solution 1:

Define $$\psi(q)\equiv-\frac12+\frac12\vartheta_3(0,e^{-\pi q})=\sum_{n\ge1}e^{-\pi n^2q}$$ where $\vartheta_3(z,q)$ is Jacobi's third theta function. An application of the Poisson summation formula leads to the identity $$\vartheta_3(0,e^{-\pi/q})=\sqrt q\,\vartheta_3\left(0,e^{-\pi q}\right)$$ whose proof is outlined in Jacobi (1828). Substituting $q:=(\pi k^2)^{-1}$ yields $$\sum_{n\ge1}e^{-n^2/k^2}=-\frac12+\frac12\vartheta_3(0,e^{-1/k^2})=-\frac12+\frac12\cdot\sqrt{\pi k^2}\vartheta_3(0,e^{-\pi^2k^2})$$ so that $$\sum_{n\ge1}e^{-n^2/k^2}=-\frac12+\frac k2\sqrt\pi(1+2\psi(\pi k^2))=-\frac12+\frac k2\sqrt\pi+k\sqrt\pi\sum_{n\ge1}e^{-(\pi kn)^2}.$$ When $k=10$ the error has an order of magnitude of $$\log_{10}\left(10\sqrt\pi e^{-100\pi^2}\right)=1+\log_{10}\sqrt\pi-100\pi^2\log_{10}e=\bf-427$$ which corresponds to your observation.