$\int_0^1\arctan\,_4F_3\left(\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5};\frac{1}{2},\frac{3}{4},\frac{5}{4};\frac{x}{64}\right)\,\mathrm dx$
I need help with calculating this integral: $$\int_0^1\arctan\,_4F_3\left(\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5};\frac{1}{2},\frac{3}{4},\frac{5}{4};\frac{x}{64}\right)\,\mathrm dx,$$ Where $_pF_q$ is a generalized hypergeometric function.
I was told it has a closed-form representation in terms of elementary functions and integers.
This hypergeometric function is not an elementary function, but its inverse is - see Bring radical.
\begin{align} I&= \int_0^1\arctan{_4F_3}\left(\frac15,\frac25,\frac35,\frac45;\frac12,\frac34,\frac54;\frac{x}{64}\right)\,dx \\ &=\frac{3125}{48}\left(5+3\pi+6\ln2-3\alpha^4+4\alpha^3+6\alpha^2-12\alpha\\-12\left(\alpha^5-\alpha^4+1\right)\arctan\frac1\alpha-6\ln\left(1+\alpha^2\right)\right)\\ &=0.7857194\dots \end{align} where $\alpha$ is the positive root of the polynomial $625\alpha^4-500\alpha^3-100\alpha^2-20\alpha-4$. It can be expressed in radicals as follows:
$$\alpha=\frac15+\sqrt\beta+\sqrt{\frac15-\beta +\frac1{25\sqrt\beta}},$$ where $$\beta=\frac1{30}\left(\frac\gamma5-\frac4\gamma+2\right),$$ where $$\gamma=\sqrt[3]{15\sqrt{105}-125}.$$