Coalesce values from 2 columns into a single column in a pandas dataframe

I'm looking for a method that behaves similarly to coalesce in T-SQL. I have 2 columns (column A and B) that are sparsely populated in a pandas dataframe. I'd like to create a new column using the following rules:

  1. If the value in column A is not null, use that value for the new column C
  2. If the value in column A is null, use the value in column B for the new column C

Like I mentioned, this can be accomplished in MS SQL Server via the coalesce function. I haven't found a good pythonic method for this; does one exist?


Solution 1:

use combine_first():

In [16]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 2)), columns=list('ab'))

In [17]: df.loc[::2, 'a'] = np.nan

In [18]: df
Out[18]:
     a  b
0  NaN  0
1  5.0  5
2  NaN  8
3  2.0  8
4  NaN  3
5  9.0  4
6  NaN  7
7  2.0  0
8  NaN  6
9  2.0  5

In [19]: df['c'] = df.a.combine_first(df.b)

In [20]: df
Out[20]:
     a  b    c
0  NaN  0  0.0
1  5.0  5  5.0
2  NaN  8  8.0
3  2.0  8  2.0
4  NaN  3  3.0
5  9.0  4  9.0
6  NaN  7  7.0
7  2.0  0  2.0
8  NaN  6  6.0
9  2.0  5  2.0

Solution 2:

Coalesce for multiple columns with DataFrame.bfill

All these methods work for two columns and are fine with maybe three columns, but they all require method chaining if you have n columns when n > 2:

example dataframe:

import numpy as np
import pandas as pd

df = pd.DataFrame({'col1':[np.NaN, 2, 4, 5, np.NaN],
                   'col2':[np.NaN, 5, 1, 0, np.NaN],
                   'col3':[2, np.NaN, 9, 1, np.NaN],
                   'col4':[np.NaN, 10, 11, 4, 8]})

print(df)

   col1  col2  col3  col4
0   NaN   NaN   2.0   NaN
1   2.0   5.0   NaN  10.0
2   4.0   1.0   9.0  11.0
3   5.0   0.0   1.0   4.0
4   NaN   NaN   NaN   8.0

Using DataFrame.bfill over the index axis (axis=1) we can get the values in a generalized way even for a big n amount of columns

Plus, this would also work for string type columns !!

df['coalesce'] = df.bfill(axis=1).iloc[:, 0]

   col1  col2  col3  col4  coalesce
0   NaN   NaN   2.0   NaN       2.0
1   2.0   5.0   NaN  10.0       2.0
2   4.0   1.0   9.0  11.0       4.0
3   5.0   0.0   1.0   4.0       5.0
4   NaN   NaN   NaN   8.0       8.0

Using the Series.combine_first (accepted answer), it can get quite cumbersome and would eventually be undoable when amount of columns grow

df['coalesce'] = (
    df['col1'].combine_first(df['col2'])
        .combine_first(df['col3'])
        .combine_first(df['col4'])
)

   col1  col2  col3  col4  coalesce
0   NaN   NaN   2.0   NaN       2.0
1   2.0   5.0   NaN  10.0       2.0
2   4.0   1.0   9.0  11.0       4.0
3   5.0   0.0   1.0   4.0       5.0
4   NaN   NaN   NaN   8.0       8.0