Most idiomatic way to select elements from an array in Golang?
Solution 1:
There is no one-liner as you have it in Ruby, but with a helper function you can make it almost as short.
Here's our helper function that loops over a slice, and selects and returns only the elements that meet a criteria captured by a function value:
func filter(ss []string, test func(string) bool) (ret []string) {
for _, s := range ss {
if test(s) {
ret = append(ret, s)
}
}
return
}
Using this helper function your task:
ss := []string{"foo_1", "asdf", "loooooooong", "nfoo_1", "foo_2"}
mytest := func(s string) bool { return !strings.HasPrefix(s, "foo_") && len(s) <= 7 }
s2 := filter(ss, mytest)
fmt.Println(s2)
Output (try it on the Go Playground):
[asdf nfoo_1]
Note:
If it is expected that many elements will be selected, it might be profitable to allocate a "big" ret
slice beforehand, and use simple assignment instead of the append()
. And before returning, slice the ret
to have a length equal to the number of selected elements.
Note #2:
In my example I chose a test()
function which tells if an element is to be returned. So I had to invert your "exclusion" condition. Obviously you may write the helper function to expect a tester function which tells what to exclude (and not what to include).
Solution 2:
Have a look at robpike's filter library. This would allow you to do:
package main
import (
"fmt"
"strings"
"filter"
)
func isNoFoo7(a string) bool {
return ! strings.HasPrefix(a, "foo_") && len(a) <= 7
}
func main() {
a := []string{"test", "some_other_test", "foo_etc"}
result := Choose(a, isNoFoo7)
fmt.Println(result) // [test]
}
Interestingly enough the README.md by Rob:
I wanted to see how hard it was to implement this sort of thing in Go, with as nice an API as I could manage. It wasn't hard. Having written it a couple of years ago, I haven't had occasion to use it once. Instead, I just use "for" loops. You shouldn't use it either.
So the most idiomatic way according to Rob would be something like:
func main() {
a := []string{"test", "some_other_test", "foo_etc"}
nofoos := []string{}
for i := range a {
if(!strings.HasPrefix(a[i], "foo_") && len(a[i]) <= 7) {
nofoos = append(nofoos, a[i])
}
}
fmt.Println(nofoos) // [test]
}
This style is very similar, if not identical, to the approach any C-family language takes.
Solution 3:
Today, I stumbled on a pretty idiom that surprised me. If you want to filter a slice in place without allocating, use two slices with the same backing array:
s := []T{
// the input
}
s2 := s
s = s[:0]
for _, v := range s2 {
if shouldKeep(v) {
s = append(s, v)
}
}
Here's a specific example of removing duplicate strings:
s := []string{"a", "a", "b", "c", "c"}
s2 := s
s = s[:0]
var last string
for _, v := range s2 {
if len(s) == 0 || v != last {
last = v
s = append(s, v)
}
}
If you need to keep both slices, simply replace s = s[:0]
with s = nil
or s = make([]T, 0, len(s))
, depending on whether you want append()
to allocate for you.
Solution 4:
There are a couple of nice ways to filter a slice without allocations or new dependencies. Found in the Go wiki on Github:
Filter (in place)
n := 0 for _, x := range a { if keep(x) { a[n] = x n++ } } a = a[:n]
And another, more readable, way:
Filtering without allocating
This trick uses the fact that a slice shares the same backing array and capacity as the original, so the storage is reused for the filtered slice. Of course, the original contents are modified.
b := a[:0] for _, x := range a { if f(x) { b = append(b, x) } }
For elements which must be garbage collected, the following code can be included afterwards:
for i := len(b); i < len(a); i++ { a[i] = nil // or the zero value of T }
One thing I'm not sure about is whether the first method needs clearing (setting to nil
) the items in slice a
after index n
, like they do in the second method.
EDIT: the second way is basically what MicahStetson described in his answer. In my code I use a function similar to the following, which is probably as good as it gets in terms on performance and readability:
func filterSlice(slice []*T, keep func(*T) bool) []*T {
newSlice := slice[:0]
for _, item := range slice {
if keep(item) {
newSlice = append(newSlice, item)
}
}
// make sure discarded items can be garbage collected
for i := len(newSlice); i < len(slice); i++ {
slice[i] = nil
}
return newSlice
}
Note that if items in your slice are not pointers and don't contain pointers you can skip the second for loop.
Solution 5:
There isn't an idiomatic way you can achieve the same expected result in Go in one single line as in Ruby, but with a helper function you can obtain the same expressiveness as in Ruby.
You can call this helper function as:
Filter(strs, func(v string) bool {
return strings.HasPrefix(v, "foo_") // return foo_testfor
}))
Here is the whole code:
package main
import "strings"
import "fmt"
// Returns a new slice containing all strings in the
// slice that satisfy the predicate `f`.
func Filter(vs []string, f func(string) bool) []string {
vsf := make([]string, 0)
for _, v := range vs {
if f(v) && len(v) > 7 {
vsf = append(vsf, v)
}
}
return vsf
}
func main() {
var strs = []string{"foo1", "foo2", "foo3", "foo3", "foo_testfor", "_foo"}
fmt.Println(Filter(strs, func(v string) bool {
return strings.HasPrefix(v, "foo_") // return foo_testfor
}))
}
And the running example: Playground