How to use sklearn fit_transform with pandas and return dataframe instead of numpy array?
Solution 1:
You could convert the DataFrame as a numpy array using as_matrix()
. Example on a random dataset:
Edit:
Changing as_matrix()
to values
, (it doesn't change the result) per the last sentence of the as_matrix()
docs above:
Generally, it is recommended to use ‘.values’.
import pandas as pd
import numpy as np #for the random integer example
df = pd.DataFrame(np.random.randint(0.0,100.0,size=(10,4)),
index=range(10,20),
columns=['col1','col2','col3','col4'],
dtype='float64')
Note, indices are 10-19:
In [14]: df.head(3)
Out[14]:
col1 col2 col3 col4
10 3 38 86 65
11 98 3 66 68
12 88 46 35 68
Now fit_transform
the DataFrame to get the scaled_features
array
:
from sklearn.preprocessing import StandardScaler
scaled_features = StandardScaler().fit_transform(df.values)
In [15]: scaled_features[:3,:] #lost the indices
Out[15]:
array([[-1.89007341, 0.05636005, 1.74514417, 0.46669562],
[ 1.26558518, -1.35264122, 0.82178747, 0.59282958],
[ 0.93341059, 0.37841748, -0.60941542, 0.59282958]])
Assign the scaled data to a DataFrame (Note: use the index
and columns
keyword arguments to keep your original indices and column names:
scaled_features_df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)
In [17]: scaled_features_df.head(3)
Out[17]:
col1 col2 col3 col4
10 -1.890073 0.056360 1.745144 0.466696
11 1.265585 -1.352641 0.821787 0.592830
12 0.933411 0.378417 -0.609415 0.592830
Edit 2:
Came across the sklearn-pandas package. It's focused on making scikit-learn easier to use with pandas. sklearn-pandas
is especially useful when you need to apply more than one type of transformation to column subsets of the DataFrame
, a more common scenario. It's documented, but this is how you'd achieve the transformation we just performed.
from sklearn_pandas import DataFrameMapper
mapper = DataFrameMapper([(df.columns, StandardScaler())])
scaled_features = mapper.fit_transform(df.copy(), 4)
scaled_features_df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)
Solution 2:
import pandas as pd
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('your file here')
ss = StandardScaler()
df_scaled = pd.DataFrame(ss.fit_transform(df),columns = df.columns)
The df_scaled will be the 'same' dataframe, only now with the scaled values
Solution 3:
Reassigning back to df.values preserves both index and columns.
df.values[:] = StandardScaler().fit_transform(df)