How to extend Python Enum?
Subclassing an enumeration is allowed only if the enumeration does not define any members.
Allowing subclassing of enums that define members would lead to a violation of some important invariants of types and instances.
https://docs.python.org/3/library/enum.html#restricted-enum-subclassing
So no, it's not directly possible.
While uncommon, it is sometimes useful to create an enum from many modules. The aenum
1 library supports this with an extend_enum
function:
from aenum import Enum, extend_enum
class Index(Enum):
DeviceType = 0x1000
ErrorRegister = 0x1001
for name, value in (
('ControlWord', 0x6040),
('StatusWord', 0x6041),
('OperationMode', 0x6060),
):
extend_enum(Index, name, value)
assert len(Index) == 5
assert list(Index) == [Index.DeviceType, Index.ErrorRegister, Index.ControlWord, Index.StatusWord, Index.OperationMode]
assert Index.DeviceType.value == 0x1000
assert Index.StatusWord.value == 0x6041
1 Disclosure: I am the author of the Python stdlib Enum
, the enum34
backport, and the Advanced Enumeration (aenum
) library.
Calling the Enum class directly and making use of chain allows the extension (joining) of an existing enum.
I came upon the problem of extending enums while working on a CANopen implementation. Parameter indices in the range from 0x1000 to 0x2000 are generic to all CANopen nodes while e.g. the range from 0x6000 onwards depends open whether the node is a drive, io-module, etc.
nodes.py:
from enum import IntEnum
class IndexGeneric(IntEnum):
""" This enum holds the index value of genric object entrys
"""
DeviceType = 0x1000
ErrorRegister = 0x1001
Idx = IndexGeneric
drives.py:
from itertools import chain
from enum import IntEnum
from nodes import IndexGeneric
class IndexDrives(IntEnum):
""" This enum holds the index value of drive object entrys
"""
ControlWord = 0x6040
StatusWord = 0x6041
OperationMode = 0x6060
Idx= IntEnum('Idx', [(i.name, i.value) for i in chain(IndexGeneric,IndexDrives)])
I tested that way on 3.8. We may inherit existing enum but we need to do it also from base class (at last position).
Docs:
A new Enum class must have one base Enum class, up to one concrete data type, and as many object-based mixin classes as needed. The order of these base classes is:
class EnumName([mix-in, ...,] [data-type,] base-enum):
pass
Example:
class Cats(Enum):
SIBERIAN = "siberian"
SPHINX = "sphinx"
class Animals(Cats, Enum):
LABRADOR = "labrador"
CORGI = "corgi"
After that you may access Cats from Animals:
>>> Animals.SIBERIAN
<Cats.SIBERIAN: 'siberian'>
But if you want to iterate over this enum, only new members were accessible:
>>> list(Animals)
[<Animals.LABRADOR: 'labrador'>, <Animals.CORGI: 'corgi'>]
Actually this way is for inheriting methods from base class, but you may use it for members with these restrictions.
Another way (a bit hacky)
As described above, to write some function to join two enums in one. I've wrote that example:
def extend_enum(inherited_enum):
def wrapper(added_enum):
joined = {}
for item in inherited_enum:
joined[item.name] = item.value
for item in added_enum:
joined[item.name] = item.value
return Enum(added_enum.__name__, joined)
return wrapper
class Cats(Enum):
SIBERIAN = "siberian"
SPHINX = "sphinx"
@extend_enum(Cats)
class Animals(Enum):
LABRADOR = "labrador"
CORGI = "corgi"
But here we meet another problems. If we want to compare members it fails:
>>> Animals.SIBERIAN == Cats.SIBERIAN
False
Here we may compare only names and values of newly created members:
>>> Animals.SIBERIAN.value == Cats.SIBERIAN.value
True
But if we need iteration over new Enum, it works ok:
>>> list(Animals)
[<Animals.SIBERIAN: 'siberian'>, <Animals.SPHINX: 'sphinx'>, <Animals.LABRADOR: 'labrador'>, <Animals.CORGI: 'corgi'>]
So choose your way: simple inheritance, inheritance emulation with decorator (recreation in fact), or adding a new dependency like aenum (I haven't tested it, but I expect it support all features I described).