pandas select from Dataframe using startswith

Solution 1:

You can use the str.startswith DataFrame method to give more consistent results:

In [11]: s = pd.Series(['a', 'ab', 'c', 11, np.nan])

In [12]: s
Out[12]:
0      a
1     ab
2      c
3     11
4    NaN
dtype: object

In [13]: s.str.startswith('a', na=False)
Out[13]:
0     True
1     True
2    False
3    False
4    False
dtype: bool

and the boolean indexing will work just fine (I prefer to use loc, but it works just the same without):

In [14]: s.loc[s.str.startswith('a', na=False)]
Out[14]:
0     a
1    ab
dtype: object

.

It looks least one of your elements in the Series/column is a float, which doesn't have a startswith method hence the AttributeError, the list comprehension should raise the same error...

Solution 2:

To retrieve all the rows which startwith required string

dataFrameOut = dataFrame[dataFrame['column name'].str.match('string')]

To retrieve all the rows which contains required string

dataFrameOut = dataFrame[dataFrame['column name'].str.contains('string')]

Solution 3:

Using startswith for a particular column value

df  = df.loc[df["SUBDIVISION"].str.startswith('INVERNESS', na=False)]

Solution 4:

You can use apply to easily apply any string matching function to your column elementwise.

table2=table[table['SUBDIVISION'].apply(lambda x: x.startswith('INVERNESS'))]

this assuming that your "SUBDIVISION" column is of the correct type (string)

Edit: fixed missing parenthesis