Spark: How to map Python with Scala or Java User Defined Functions?
Spark 2.1+
You can use SQLContext.registerJavaFunction
:
Register a java UDF so it can be used in SQL statements.
which requires a name
, fully qualified name of Java class, and optional return type. Unfortunately for now it can be used only in SQL statements (or with expr
/ selectExpr
) and requires a Java org.apache.spark.sql.api.java.UDF*
:
scalaVersion := "2.11.8"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-sql" % "2.1.0"
)
package com.example.spark.udfs
import org.apache.spark.sql.api.java.UDF1
class addOne extends UDF1[Integer, Integer] {
def call(x: Integer) = x + 1
}
sqlContext.registerJavaFunction("add_one", "com.example.spark.udfs.addOne")
sqlContext.sql("SELECT add_one(1)").show()
## +------+
## |UDF(1)|
## +------+
## | 2|
## +------+
Version indpendent:
I wouldn't go so far as to say it is supported but it is certainly possible. All SQL functions available currently in PySpark are simply a wrappers around Scala API.
Lets assume I want to reuse GroupConcat
UDAF I've created as an answer to SPARK SQL replacement for mysql GROUP_CONCAT aggregate function and it is located in a package com.example.udaf
:
from pyspark.sql.column import Column, _to_java_column, _to_seq
from pyspark.sql import Row
row = Row("k", "v")
df = sc.parallelize([
row(1, "foo1"), row(1, "foo2"), row(2, "bar1"), row(2, "bar2")]).toDF()
def groupConcat(col):
"""Group and concatenate values for a given column
>>> df = sqlContext.createDataFrame([(1, "foo"), (2, "bar")], ("k", "v"))
>>> df.select(groupConcat("v").alias("vs"))
[Row(vs=u'foo,bar')]
"""
sc = SparkContext._active_spark_context
# It is possible to use java_import to avoid full package path
_groupConcat = sc._jvm.com.example.udaf.GroupConcat.apply
# Converting to Seq to match apply(exprs: Column*)
return Column(_groupConcat(_to_seq(sc, [col], _to_java_column)))
df.groupBy("k").agg(groupConcat("v").alias("vs")).show()
## +---+---------+
## | k| vs|
## +---+---------+
## | 1|foo1,foo2|
## | 2|bar1,bar2|
## +---+---------+
There is far too much leading underscores for my taste but as you can see it can be done.
Related to:
- Calling Java/Scala function from a task
- How to use a Scala class inside Pyspark
- Transforming PySpark RDD with Scala