SparkSQL: How to deal with null values in user defined function?

This is where Optioncomes in handy:

val extractDateAsOptionInt = udf((d: String) => d match {
  case null => None
  case s => Some(s.substring(0, 10).filterNot("-".toSet).toInt)
})

or to make it slightly more secure in general case:

import scala.util.Try

val extractDateAsOptionInt = udf((d: String) => Try(
  d.substring(0, 10).filterNot("-".toSet).toInt
).toOption)

All credit goes to Dmitriy Selivanov who've pointed out this solution as a (missing?) edit here.

Alternative is to handle null outside the UDF:

import org.apache.spark.sql.functions.{lit, when}
import org.apache.spark.sql.types.IntegerType

val extractDateAsInt = udf(
   (d: String) => d.substring(0, 10).filterNot("-".toSet).toInt
)

df.withColumn("y",
  when($"x".isNull, lit(null))
    .otherwise(extractDateAsInt($"x"))
    .cast(IntegerType)
)

Scala actually has a nice factory function, Option(), that can make this even more concise:

val extractDateAsOptionInt = udf((d: String) => 
  Option(d).map(_.substring(0, 10).filterNot("-".toSet).toInt))

Internally the Option object's apply method is just doing the null check for you:

def apply[A](x: A): Option[A] = if (x == null) None else Some(x)

Supplementary code

With the nice answer of @zero323, I created the following code, to have user defined functions available that handle null values as described. Hope, it is helpful for others!

/**
 * Set of methods to construct [[org.apache.spark.sql.UserDefinedFunction]]s that
 * handle `null` values.
 */
object NullableFunctions {

  import org.apache.spark.sql.functions._
  import scala.reflect.runtime.universe.{TypeTag}
  import org.apache.spark.sql.UserDefinedFunction

  /**
   * Given a function A1 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
   *   * if fnc input is null, None is returned. This will create a null value in the output Spark column.
   *   * if A1 is non null, Some( f(input) will be returned, thus creating f(input) as value in the output column.
   * @param f function from A1 => RT
   * @tparam RT return type
   * @tparam A1 input parameter type
   * @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
   */
  def nullableUdf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = {
    udf[Option[RT],A1]( (i: A1) => i match {
      case null => None
      case s => Some(f(i))
    })
  }

  /**
   * Given a function A1, A2 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
   *   * if on of the function input parameters is null, None is returned.
   *     This will create a null value in the output Spark column.
   *   * if both input parameters are non null, Some( f(input) will be returned, thus creating f(input1, input2)
   *     as value in the output column.
   * @param f function from A1 => RT
   * @tparam RT return type
   * @tparam A1 input parameter type
   * @tparam A2 input parameter type
   * @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
   */
  def nullableUdf[RT: TypeTag, A1: TypeTag, A2: TypeTag](f: Function2[A1, A2, RT]): UserDefinedFunction = {
    udf[Option[RT], A1, A2]( (i1: A1, i2: A2) =>  (i1, i2) match {
      case (null, _) => None
      case (_, null) => None
      case (s1, s2) => Some((f(s1,s2)))
    } )
  }
}