RESTful Authentication
Solution 1:
How to handle authentication in a RESTful Client-Server architecture is a matter of debate.
Commonly, it can be achieved, in the SOA over HTTP world via:
- HTTP basic auth over HTTPS;
- Cookies and session management;
- Token in HTTP headers (e.g. OAuth 2.0 + JWT);
- Query Authentication with additional signature parameters.
You'll have to adapt, or even better mix those techniques, to match your software architecture at best.
Each authentication scheme has its own PROs and CONs, depending on the purpose of your security policy and software architecture.
HTTP basic auth over HTTPS
This first solution, based on the standard HTTPS protocol, is used by most web services.
GET /spec.html HTTP/1.1
Host: www.example.org
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
It's easy to implement, available by default on all browsers, but has some known drawbacks, like the awful authentication window displayed on the Browser, which will persist (there is no LogOut-like feature here), some server-side additional CPU consumption, and the fact that the user-name and password are transmitted (over HTTPS) into the Server (it should be more secure to let the password stay only on the client side, during keyboard entry, and be stored as secure hash on the Server).
We may use Digest Authentication, but it requires also HTTPS, since it is vulnerable to MiM or Replay attacks, and is specific to HTTP.
Session via Cookies
To be honest, a session managed on the Server is not truly Stateless.
One possibility could be to maintain all data within the cookie content. And, by design, the cookie is handled on the Server side (Client, in fact, does even not try to interpret this cookie data: it just hands it back to the server on each successive request). But this cookie data is application state data, so the client should manage it, not the server, in a pure Stateless world.
GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: theme=light; sessionToken=abc123
The cookie technique itself is HTTP-linked, so it's not truly RESTful, which should be protocol-independent, IMHO. It is vulnerable to MiM or Replay attacks.
Granted via Token (OAuth2)
An alternative is to put a token within the HTTP headers so that the request is authenticated. This is what OAuth 2.0 does, for instance. See the RFC 6749:
GET /resource/1 HTTP/1.1
Host: example.com
Authorization: Bearer mF_9.B5f-4.1JqM
In short, this is very similar to a cookie and suffers to the same issues: not stateless, relying on HTTP transmission details, and subject to a lot of security weaknesses - including MiM and Replay - so is to be used only over HTTPS. Typically, a JWT is used as a token.
Query Authentication
Query Authentication consists in signing each RESTful request via some additional parameters on the URI. See this reference article.
It was defined as such in this article:
All REST queries must be authenticated by signing the query parameters sorted in lower-case, alphabetical order using the private credential as the signing token. Signing should occur before URL encoding the query string.
This technique is perhaps the more compatible with a Stateless architecture, and can also be implemented with a light session management (using in-memory sessions instead of DB persistence).
For instance, here is a generic URI sample from the link above:
GET /object?apiKey=Qwerty2010
should be transmitted as such:
GET /object?timestamp=1261496500&apiKey=Qwerty2010&signature=abcdef0123456789
The string being signed is /object?apikey=Qwerty2010×tamp=1261496500
and the signature is the SHA256 hash of that string using the private component of the API key.
Server-side data caching can be always available. For instance, in our framework, we cache the responses at the SQL level, not at the URI level. So adding this extra parameter doesn't break the cache mechanism.
See this article for some details about RESTful authentication in our client-server ORM/SOA/MVC framework, based on JSON and REST. Since we allow communication not only over HTTP/1.1, but also named pipes or GDI messages (locally), we tried to implement a truly RESTful authentication pattern, and not rely on HTTP specificity (like header or cookies).
Later Note: adding a signature in the URI can be seen as bad practice (since for instance it will appear in the http server logs) so it has to be mitigated, e.g. by a proper TTL to avoid replays. But if your http logs are compromised, you will certainly have bigger security problems.
In practice, the upcoming MAC Tokens Authentication for OAuth 2.0 may be a huge improvement in respect to the "Granted by Token" current scheme. But this is still a work in progress and is tied to HTTP transmission.
Conclusion
It's worth concluding that REST is not only HTTP-based, even if, in practice, it's also mostly implemented over HTTP. REST can use other communication layers. So a RESTful authentication is not just a synonym of HTTP authentication, whatever Google answers. It should even not use the HTTP mechanism at all but shall be abstracted from the communication layer. And if you use HTTP communication, thanks to the Let's Encrypt initiative there is no reason not to use proper HTTPS, which is required in addition to any authentication scheme.
Solution 2:
I doubt whether the people enthusiastically shouting "HTTP Authentication" ever tried making a browser-based application (instead of a machine-to-machine web service) with REST (no offense intended - I just don't think they ever faced the complications).
Problems I found with using HTTP Authentication on RESTful services that produce HTML pages to be viewed in a browser are:
- user typically gets an ugly browser-made login box, which is very user-unfriendly. you cannot add password retrieval, help boxes, etcetera.
- logging out or logging in under a different name is a problem - browsers will keep sending authentication information to the site until you close the window
- timeouts are difficult
A very insightful article that tackles these point by point is here, but this results in a lot of browser-specific javascript hackery, workarounds for workarounds, et cetera. As such, it is also not forward-compatible so will require constant maintenance as new browsers are released. I do not consider that clean and clear design, plus I feel it is a lot of extra work and headache just so that I can enthusiastically show my REST-badge to my friends.
I believe cookies are the solution. But wait, cookies are evil, aren't they? No, they're not, the way cookies are often used is evil. A cookie itself is just a piece of client-side information, just like the HTTP authentication info that the browser would keep track of while you browse. And this piece of client-side information is sent to the server at every request, again just like the HTTP Authentication info would be. Conceptually, the only difference is that the content of this piece of client-side state can be determined by the server as part of its response.
By making sessions a RESTful resource with just the following rules:
- A session maps a key to a user id (and possibly a last-action-timestamp for timeouts)
- If a session exists, then that means that the key is valid.
- Login means POSTing to /sessions, a new key is set as a cookie
- Logout means DELETEing /sessions/{key} (with the overloaded POST, remember, we're a browser, and HTML 5 is a long way to go yet)
- Authentication is done by sending the key as a cookie at every request and checking whether the session exists and is valid
The only difference to HTTP Authentication, now, is that the authentication key is generated by the server and sent to the client who keeps sending it back, instead of the client computing it from the entered credentials.
converter42 adds that when using https (which we should), it is important that the cookie will have its secure flag set so that authentication info is never sent over a non-secure connection. Great point, hadn't seen it myself.
I feel that this is a sufficient solution that works fine, but I must admit that I'm not enough of a security expert to identify potential holes in this scheme - all I know is that hundreds of non-RESTful web applications use essentially the same login protocol ($_SESSION in PHP, HttpSession in Java EE, etc.). The cookie header contents are simply used to address a server-side resource, just like an accept-language might be used to access translation resources, etcetera. I feel that it is the same, but maybe others don't? What do you think, guys?