Is there a simple, elegant way to define singletons? [duplicate]
There seem to be many ways to define singletons in Python. Is there a consensus opinion on Stack Overflow?
Solution 1:
I don't really see the need, as a module with functions (and not a class) would serve well as a singleton. All its variables would be bound to the module, which could not be instantiated repeatedly anyway.
If you do wish to use a class, there is no way of creating private classes or private constructors in Python, so you can't protect against multiple instantiations, other than just via convention in use of your API. I would still just put methods in a module, and consider the module as the singleton.
Solution 2:
Here's my own implementation of singletons. All you have to do is decorate the class; to get the singleton, you then have to use the Instance
method. Here's an example:
@Singleton
class Foo:
def __init__(self):
print 'Foo created'
f = Foo() # Error, this isn't how you get the instance of a singleton
f = Foo.instance() # Good. Being explicit is in line with the Python Zen
g = Foo.instance() # Returns already created instance
print f is g # True
And here's the code:
class Singleton:
"""
A non-thread-safe helper class to ease implementing singletons.
This should be used as a decorator -- not a metaclass -- to the
class that should be a singleton.
The decorated class can define one `__init__` function that
takes only the `self` argument. Also, the decorated class cannot be
inherited from. Other than that, there are no restrictions that apply
to the decorated class.
To get the singleton instance, use the `instance` method. Trying
to use `__call__` will result in a `TypeError` being raised.
"""
def __init__(self, decorated):
self._decorated = decorated
def instance(self):
"""
Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned.
"""
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance
def __call__(self):
raise TypeError('Singletons must be accessed through `instance()`.')
def __instancecheck__(self, inst):
return isinstance(inst, self._decorated)
Solution 3:
You can override the __new__
method like this:
class Singleton(object):
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(Singleton, cls).__new__(
cls, *args, **kwargs)
return cls._instance
if __name__ == '__main__':
s1 = Singleton()
s2 = Singleton()
if (id(s1) == id(s2)):
print "Same"
else:
print "Different"
Solution 4:
A slightly different approach to implement the singleton in Python is the borg pattern by Alex Martelli (Google employee and Python genius).
class Borg:
__shared_state = {}
def __init__(self):
self.__dict__ = self.__shared_state
So instead of forcing all instances to have the same identity, they share state.