Solution 1:

I don't really like the type-checking and type-casting solutions provided above, so here's 100% type-safe union which will throw compilation errors if you attempt to use the wrong datatype:

using System;

namespace Juliet
{
    class Program
    {
        static void Main(string[] args)
        {
            Union3<int, char, string>[] unions = new Union3<int,char,string>[]
                {
                    new Union3<int, char, string>.Case1(5),
                    new Union3<int, char, string>.Case2('x'),
                    new Union3<int, char, string>.Case3("Juliet")
                };

            foreach (Union3<int, char, string> union in unions)
            {
                string value = union.Match(
                    num => num.ToString(),
                    character => new string(new char[] { character }),
                    word => word);
                Console.WriteLine("Matched union with value '{0}'", value);
            }

            Console.ReadLine();
        }
    }

    public abstract class Union3<A, B, C>
    {
        public abstract T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h);
        // private ctor ensures no external classes can inherit
        private Union3() { } 

        public sealed class Case1 : Union3<A, B, C>
        {
            public readonly A Item;
            public Case1(A item) : base() { this.Item = item; }
            public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
            {
                return f(Item);
            }
        }

        public sealed class Case2 : Union3<A, B, C>
        {
            public readonly B Item;
            public Case2(B item) { this.Item = item; }
            public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
            {
                return g(Item);
            }
        }

        public sealed class Case3 : Union3<A, B, C>
        {
            public readonly C Item;
            public Case3(C item) { this.Item = item; }
            public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
            {
                return h(Item);
            }
        }
    }
}

Solution 2:

I like the direction of the accepted solution but it doesn't scale well for unions of more than three items (e.g. a union of 9 items would require 9 class definitions).

Here is another approach that is also 100% type-safe at compile-time, but that is easy to grow to large unions.

public class UnionBase<A>
{
    dynamic value;

    public UnionBase(A a) { value = a; } 
    protected UnionBase(object x) { value = x; }

    protected T InternalMatch<T>(params Delegate[] ds)
    {
        var vt = value.GetType();    
        foreach (var d in ds)
        {
            var mi = d.Method;

            // These are always true if InternalMatch is used correctly.
            Debug.Assert(mi.GetParameters().Length == 1);
            Debug.Assert(typeof(T).IsAssignableFrom(mi.ReturnType));

            var pt = mi.GetParameters()[0].ParameterType;
            if (pt.IsAssignableFrom(vt))
                return (T)mi.Invoke(null, new object[] { value });
        }
        throw new Exception("No appropriate matching function was provided");
    }

    public T Match<T>(Func<A, T> fa) { return InternalMatch<T>(fa); }
}

public class Union<A, B> : UnionBase<A>
{
    public Union(A a) : base(a) { }
    public Union(B b) : base(b) { }
    protected Union(object x) : base(x) { }
    public T Match<T>(Func<A, T> fa, Func<B, T> fb) { return InternalMatch<T>(fa, fb); }
}

public class Union<A, B, C> : Union<A, B>
{
    public Union(A a) : base(a) { }
    public Union(B b) : base(b) { }
    public Union(C c) : base(c) { }
    protected Union(object x) : base(x) { }
    public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc) { return InternalMatch<T>(fa, fb, fc); }
}

public class Union<A, B, C, D> : Union<A, B, C>
{
    public Union(A a) : base(a) { }
    public Union(B b) : base(b) { }
    public Union(C c) : base(c) { }
    public Union(D d) : base(d) { }
    protected Union(object x) : base(x) { }
    public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd) { return InternalMatch<T>(fa, fb, fc, fd); }
}

public class Union<A, B, C, D, E> : Union<A, B, C, D>
{
    public Union(A a) : base(a) { }
    public Union(B b) : base(b) { }
    public Union(C c) : base(c) { }
    public Union(D d) : base(d) { }
    public Union(E e) : base(e) { }
    protected Union(object x) : base(x) { }
    public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd, Func<E, T> fe) { return InternalMatch<T>(fa, fb, fc, fd, fe); }
}

public class DiscriminatedUnionTest : IExample
{
    public Union<int, bool, string, int[]> MakeUnion(int n)
    {
        return new Union<int, bool, string, int[]>(n);
    }

    public Union<int, bool, string, int[]> MakeUnion(bool b)
    {
        return new Union<int, bool, string, int[]>(b);
    }

    public Union<int, bool, string, int[]> MakeUnion(string s)
    {
        return new Union<int, bool, string, int[]>(s);
    }

    public Union<int, bool, string, int[]> MakeUnion(params int[] xs)
    {
        return new Union<int, bool, string, int[]>(xs);
    }

    public void Print(Union<int, bool, string, int[]> union)
    {
        var text = union.Match(
            n => "This is an int " + n.ToString(),
            b => "This is a boolean " + b.ToString(),
            s => "This is a string" + s,
            xs => "This is an array of ints " + String.Join(", ", xs));
        Console.WriteLine(text);
    }

    public void Run()
    {
        Print(MakeUnion(1));
        Print(MakeUnion(true));
        Print(MakeUnion("forty-two"));
        Print(MakeUnion(0, 1, 1, 2, 3, 5, 8));
    }
}

Solution 3:

I wrote some blog posts on this subject that might be useful:

  • Union Types in C#
  • Implementing Tic-Tac-Toe Using State Classes

Let's say you have a shopping cart scenario with three states: "Empty", "Active" and "Paid", each with different behavior.

  • You create have a ICartState interface that all states have in common (and it could just be an empty marker interface)
  • You create three classes that implement that interface. (The classes do not have to be in an inheritance relationship)
  • The interface contains a "fold" method, whereby you pass a lambda in for each state or case that you need to handle.

You could use the F# runtime from C# but as a lighter weight alternative, I have written a little T4 template for generating code like this.

Here's the interface:

partial interface ICartState
{
  ICartState Transition(
        Func<CartStateEmpty, ICartState> cartStateEmpty,
        Func<CartStateActive, ICartState> cartStateActive,
        Func<CartStatePaid, ICartState> cartStatePaid
        );
}

And here's the implementation:

class CartStateEmpty : ICartState
{
  ICartState ICartState.Transition(
        Func<CartStateEmpty, ICartState> cartStateEmpty,
        Func<CartStateActive, ICartState> cartStateActive,
        Func<CartStatePaid, ICartState> cartStatePaid
        )
  {
        // I'm the empty state, so invoke cartStateEmpty 
      return cartStateEmpty(this);
  }
}

class CartStateActive : ICartState
{
  ICartState ICartState.Transition(
        Func<CartStateEmpty, ICartState> cartStateEmpty,
        Func<CartStateActive, ICartState> cartStateActive,
        Func<CartStatePaid, ICartState> cartStatePaid
        )
  {
        // I'm the active state, so invoke cartStateActive
      return cartStateActive(this);
  }
}

class CartStatePaid : ICartState
{
  ICartState ICartState.Transition(
        Func<CartStateEmpty, ICartState> cartStateEmpty,
        Func<CartStateActive, ICartState> cartStateActive,
        Func<CartStatePaid, ICartState> cartStatePaid
        )
  {
        // I'm the paid state, so invoke cartStatePaid
      return cartStatePaid(this);
  }
}

Now let's say you extend the CartStateEmpty and CartStateActive with an AddItem method which is not implemented by CartStatePaid.

And also let's say that CartStateActive has a Pay method that the other states dont have.

Then here's some code that shows it in use -- adding two items and then paying for the cart:

public ICartState AddProduct(ICartState currentState, Product product)
{
    return currentState.Transition(
        cartStateEmpty => cartStateEmpty.AddItem(product),
        cartStateActive => cartStateActive.AddItem(product),
        cartStatePaid => cartStatePaid // not allowed in this case
        );

}

public void Example()
{
    var currentState = new CartStateEmpty() as ICartState;

    //add some products 
    currentState = AddProduct(currentState, Product.ProductX);
    currentState = AddProduct(currentState, Product.ProductY);

    //pay 
    const decimal paidAmount = 12.34m;
    currentState = currentState.Transition(
        cartStateEmpty => cartStateEmpty,  // not allowed in this case
        cartStateActive => cartStateActive.Pay(paidAmount),
        cartStatePaid => cartStatePaid     // not allowed in this case
        );
}    

Note that this code is completely typesafe -- no casting or conditionals anywhere, and compiler errors if you try to pay for an empty cart, say.

Solution 4:

I have written a library for doing this at https://github.com/mcintyre321/OneOf

Install-Package OneOf

It has the generic types in it for doing DUs e.g. OneOf<T0, T1> all the way to OneOf<T0, ..., T9>. Each of those has a .Match, and a .Switch statement which you can use for compiler safe typed behaviour, e.g.:

```

OneOf<string, ColorName, Color> backgroundColor = getBackground(); 
Color c = backgroundColor.Match(
    str => CssHelper.GetColorFromString(str),
    name => new Color(name),
    col => col
);

```

Solution 5:

I am not sure I fully understand your goal. In C, a union is a structure that uses the same memory locations for more than one field. For example:

typedef union
{
    float real;
    int scalar;
} floatOrScalar;

The floatOrScalar union could be used as a float, or an int, but they both consume the same memory space. Changing one changes the other. You can achieve the same thing with a struct in C#:

[StructLayout(LayoutKind.Explicit)]
struct FloatOrScalar
{
    [FieldOffset(0)]
    public float Real;
    [FieldOffset(0)]
    public int Scalar;
}

The above structure uses 32bits total, rather than 64bits. This is only possible with a struct. Your example above is a class, and given the nature of the CLR, makes no guarantee about memory efficiency. If you change a Union<A, B, C> from one type to another, you are not necessarily reusing memory...most likely, you are allocating a new type on the heap and dropping a different pointer in the backing object field. Contrary to a real union, your approach may actually cause more heap thrashing than you would otherwise get if you did not use your Union type.