How to select all columns, except one column in pandas?
I have a dataframe look like this:
import pandas
import numpy as np
df = DataFrame(np.random.rand(4,4), columns = list('abcd'))
df
a b c d
0 0.418762 0.042369 0.869203 0.972314
1 0.991058 0.510228 0.594784 0.534366
2 0.407472 0.259811 0.396664 0.894202
3 0.726168 0.139531 0.324932 0.906575
How I can get all columns except column b
?
Solution 1:
When the columns are not a MultiIndex, df.columns
is just an array of column names so you can do:
df.loc[:, df.columns != 'b']
a c d
0 0.561196 0.013768 0.772827
1 0.882641 0.615396 0.075381
2 0.368824 0.651378 0.397203
3 0.788730 0.568099 0.869127
Solution 2:
Don't use ix
. It's deprecated. The most readable and idiomatic way of doing this is df.drop()
:
>>> df
a b c d
0 0.175127 0.191051 0.382122 0.869242
1 0.414376 0.300502 0.554819 0.497524
2 0.142878 0.406830 0.314240 0.093132
3 0.337368 0.851783 0.933441 0.949598
>>> df.drop('b', axis=1)
a c d
0 0.175127 0.382122 0.869242
1 0.414376 0.554819 0.497524
2 0.142878 0.314240 0.093132
3 0.337368 0.933441 0.949598
Note that by default, .drop()
does not operate inplace; despite the ominous name, df
is unharmed by this process. If you want to permanently remove b
from df
, do df.drop('b', inplace=True)
.
df.drop()
also accepts a list of labels, e.g. df.drop(['a', 'b'], axis=1)
will drop column a
and b
.
Solution 3:
df[df.columns.difference(['b'])]
Out:
a c d
0 0.427809 0.459807 0.333869
1 0.678031 0.668346 0.645951
2 0.996573 0.673730 0.314911
3 0.786942 0.719665 0.330833
Solution 4:
You can use df.columns.isin()
df.loc[:, ~df.columns.isin(['b'])]
When you want to drop multiple columns, as simple as:
df.loc[:, ~df.columns.isin(['col1', 'col2'])]