PySpark groupByKey returning pyspark.resultiterable.ResultIterable
I am trying to figure out why my groupByKey is returning the following:
[(0, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a210>), (1, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a4d0>), (2, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a390>), (3, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a290>), (4, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a450>), (5, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a350>), (6, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a1d0>), (7, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a490>), (8, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a050>), (9, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a650>)]
I have flatMapped values that look like this:
[(0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D')]
I'm doing just a simple:
groupRDD = columnRDD.groupByKey()
Solution 1:
What you're getting back is an object which allows you to iterate over the results. You can turn the results of groupByKey into a list by calling list() on the values, e.g.
example = sc.parallelize([(0, u'D'), (0, u'D'), (1, u'E'), (2, u'F')])
example.groupByKey().collect()
# Gives [(0, <pyspark.resultiterable.ResultIterable object ......]
example.groupByKey().map(lambda x : (x[0], list(x[1]))).collect()
# Gives [(0, [u'D', u'D']), (1, [u'E']), (2, [u'F'])]
Solution 2:
you can also use
example.groupByKey().mapValues(list)
Solution 3:
Instead of using groupByKey(), i would suggest you use cogroup(). You can refer the below example.
[(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))]
Example:
>>> x = sc.parallelize([("foo", 1), ("bar", 4)])
>>> y = sc.parallelize([("foo", -1)])
>>> z = [(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))]
>>> print(z)
You should get the desired output...