Can a finite sum of square roots be an integer? [duplicate]
Solution 1:
At least there's an elementary way to see that if $\sqrt{a} + \sqrt{b}$ is an integer, then $a$ and $b$ are perfect squares.
Suppose $\sqrt{a} + \sqrt{b} = c\in\mathbb{Z}.$ If $c=0$ the result is trivial. Otherwise, squaring both sides we get that $$a + b + 2\sqrt{ab} = c^2$$ and therefore $ab$ must be a perfect square. Let's say $ab = d^2$. Then $a=\frac{d^2}{b}$ and \begin{align*}\frac{d}{\sqrt{b}} + \sqrt{b} &= c\\ d + b &= c\sqrt{b}, \end{align*} so $b$ is a perfect square, and $a$ must be as well.
Solution 2:
Suppose that $a,b,\sqrt a+\sqrt b\in\mathbb Z$.
$(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)=a-b\in\mathbb Z$. Since $\sqrt a-\sqrt b=\frac{a-b}{\sqrt a+\sqrt b}\in\mathbb Q$. Therefore, $\sqrt a-\sqrt b$ is an algebraic integer and rational; thus, $\sqrt a-\sqrt b\in\mathbb Z$.
Next, $(\sqrt a+\sqrt b)+(\sqrt a-\sqrt b)=2\sqrt a\in\mathbb Z$ and $(\sqrt a+\sqrt b)-(\sqrt a-\sqrt b)=2\sqrt b\in\mathbb Z$. Thus, $\sqrt a$ and $\sqrt b$ are algebraic integers and rational, therefore $\sqrt a,\sqrt b\in\mathbb Z$.
Thus, $a,b,\sqrt a+\sqrt b\in\mathbb Z\Rightarrow\sqrt a,\sqrt b\in\mathbb Z$