Pandas concat: ValueError: Shape of passed values is blah, indices imply blah2
I'm trying to merge a (Pandas 14.1) dataframe and a series. The series should form a new column, with some NAs (since the index values of the series are a subset of the index values of the dataframe).
This works for a toy example, but not with my data (detailed below).
Example:
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6, 4), columns=['A', 'B', 'C', 'D'], index=pd.date_range('1/1/2011', periods=6, freq='D'))
df1
A B C D
2011-01-01 -0.487926 0.439190 0.194810 0.333896
2011-01-02 1.708024 0.237587 -0.958100 1.418285
2011-01-03 -1.228805 1.266068 -1.755050 -1.476395
2011-01-04 -0.554705 1.342504 0.245934 0.955521
2011-01-05 -0.351260 -0.798270 0.820535 -0.597322
2011-01-06 0.132924 0.501027 -1.139487 1.107873
s1 = pd.Series(np.random.randn(3), name='foo', index=pd.date_range('1/1/2011', periods=3, freq='2D'))
s1
2011-01-01 -1.660578
2011-01-03 -0.209688
2011-01-05 0.546146
Freq: 2D, Name: foo, dtype: float64
pd.concat([df1, s1],axis=1)
A B C D foo
2011-01-01 -0.487926 0.439190 0.194810 0.333896 -1.660578
2011-01-02 1.708024 0.237587 -0.958100 1.418285 NaN
2011-01-03 -1.228805 1.266068 -1.755050 -1.476395 -0.209688
2011-01-04 -0.554705 1.342504 0.245934 0.955521 NaN
2011-01-05 -0.351260 -0.798270 0.820535 -0.597322 0.546146
2011-01-06 0.132924 0.501027 -1.139487 1.107873 NaN
The situation with the data (see below) seems basically identical - concatting a series with a DatetimeIndex whose values are a subset of the dataframe's. But it gives the ValueError in the title (blah1 = (5, 286) blah2 = (5, 276) ). Why doesn't it work?:
In[187]: df.head()
Out[188]:
high low loc_h loc_l
time
2014-01-01 17:00:00 1.376235 1.375945 1.376235 1.375945
2014-01-01 17:01:00 1.376005 1.375775 NaN NaN
2014-01-01 17:02:00 1.375795 1.375445 NaN 1.375445
2014-01-01 17:03:00 1.375625 1.375515 NaN NaN
2014-01-01 17:04:00 1.375585 1.375585 NaN NaN
In [186]: df.index
Out[186]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-01-01 17:00:00, ..., 2014-01-01 21:30:00]
Length: 271, Freq: None, Timezone: None
In [189]: hl.head()
Out[189]:
2014-01-01 17:00:00 1.376090
2014-01-01 17:02:00 1.375445
2014-01-01 17:05:00 1.376195
2014-01-01 17:10:00 1.375385
2014-01-01 17:12:00 1.376115
dtype: float64
In [187]:hl.index
Out[187]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-01-01 17:00:00, ..., 2014-01-01 21:30:00]
Length: 89, Freq: None, Timezone: None
In: pd.concat([df, hl], axis=1)
Out: [stack trace] ValueError: Shape of passed values is (5, 286), indices imply (5, 276)
Solution 1:
I had a similar problem (join
worked, but concat
failed).
Check for duplicate index values in df1
and s1
, (e.g. df1.index.is_unique
)
Removing duplicate index values (e.g., df.drop_duplicates(inplace=True)
) or one of the methods here https://stackoverflow.com/a/34297689/7163376 should resolve it.
Solution 2:
My problem were different indices, the following code solved my problem.
df1.reset_index(drop=True, inplace=True)
df2.reset_index(drop=True, inplace=True)
df = pd.concat([df1, df2], axis=1)
Solution 3:
Aus_lacy's post gave me the idea of trying related methods, of which join does work:
In [196]:
hl.name = 'hl'
Out[196]:
'hl'
In [199]:
df.join(hl).head(4)
Out[199]:
high low loc_h loc_l hl
2014-01-01 17:00:00 1.376235 1.375945 1.376235 1.375945 1.376090
2014-01-01 17:01:00 1.376005 1.375775 NaN NaN NaN
2014-01-01 17:02:00 1.375795 1.375445 NaN 1.375445 1.375445
2014-01-01 17:03:00 1.375625 1.375515 NaN NaN NaN
Some insight into why concat works on the example but not this data would be nice though!
Solution 4:
To drop duplicate indices, use
df = df.loc[df.index.drop_duplicates()]
. C.f. pandas.pydata.org/pandas-docs/stable/generated/… – BallpointBen Apr 18 at 15:25
This is wrong but I can't reply directly to BallpointBen's comment due to low reputation. The reason its wrong is that df.index.drop_duplicates()
returns a list of unique indices, but when you index back into the dataframe using those the unique indices it still returns all records. I think this is likely because indexing using one of the duplicated indices will return all instances of the index.
Instead, use df.index.duplicated()
, which returns a boolean list (add the ~
to get the not-duplicated records):
df = df.loc[~df.index.duplicated()]