How to loop over grouped Pandas dataframe?
Solution 1:
df.groupby('l_customer_id_i').agg(lambda x: ','.join(x))
does already return a dataframe, so you cannot loop over the groups anymore.
In general:
-
df.groupby(...)
returns aGroupBy
object (a DataFrameGroupBy or SeriesGroupBy), and with this, you can iterate through the groups (as explained in the docs here). You can do something like:grouped = df.groupby('A') for name, group in grouped: ...
When you apply a function on the groupby, in your example
df.groupby(...).agg(...)
(but this can also betransform
,apply
,mean
, ...), you combine the result of applying the function to the different groups together in one dataframe (the apply and combine step of the 'split-apply-combine' paradigm of groupby). So the result of this will always be again a DataFrame (or a Series depending on the applied function).
Solution 2:
Here is an example of iterating over a pd.DataFrame
grouped by the column atable
. For this sample, "create" statements for an SQL database are generated within the for
loop:
import pandas as pd
df1 = pd.DataFrame({
'atable': ['Users', 'Users', 'Domains', 'Domains', 'Locks'],
'column': ['col_1', 'col_2', 'col_a', 'col_b', 'col'],
'column_type':['varchar', 'varchar', 'int', 'varchar', 'varchar'],
'is_null': ['No', 'No', 'Yes', 'No', 'Yes'],
})
df1_grouped = df1.groupby('atable')
# iterate over each group
for group_name, df_group in df1_grouped:
print('\nCREATE TABLE {}('.format(group_name))
for row_index, row in df_group.iterrows():
col = row['column']
column_type = row['column_type']
is_null = 'NOT NULL' if row['is_null'] == 'No' else ''
print('\t{} {} {},'.format(col, column_type, is_null))
print(");")
Solution 3:
You can iterate over the index values if your dataframe has already been created.
df = df.groupby('l_customer_id_i').agg(lambda x: ','.join(x))
for name in df.index:
print name
print df.loc[name]