How can I determine if a .NET assembly was built for x86 or x64?
Look at System.Reflection.AssemblyName.GetAssemblyName(string assemblyFile)
You can examine assembly metadata from the returned AssemblyName instance:
Using PowerShell:
[36] C:\> [reflection.assemblyname]::GetAssemblyName("${pwd}\Microsoft.GLEE.dll") | fl Name : Microsoft.GLEE Version : 1.0.0.0 CultureInfo : CodeBase : file:///C:/projects/powershell/BuildAnalyzer/... EscapedCodeBase : file:///C:/projects/powershell/BuildAnalyzer/... ProcessorArchitecture : MSIL Flags : PublicKey HashAlgorithm : SHA1 VersionCompatibility : SameMachine KeyPair : FullName : Microsoft.GLEE, Version=1.0.0.0, Culture=neut...
Here, ProcessorArchitecture identifies target platform.
- Amd64: A 64-bit processor based on the x64 architecture.
- Arm: An ARM processor.
- IA64: A 64-bit Intel Itanium processor only.
- MSIL: Neutral with respect to processor and bits-per-word.
- X86: A 32-bit Intel processor, either native or in the Windows on Windows environment on a 64-bit platform (WOW64).
- None: An unknown or unspecified combination of processor and bits-per-word.
I'm using PowerShell in this example to call the method.
You can use the CorFlags CLI tool (for instance, C:\Program Files\Microsoft SDKs\Windows\v7.0\Bin\CorFlags.exe) to determine the status of an assembly, based on its output and opening an assembly as a binary asset you should be able to determine where you need to seek to determine if the 32BIT flag is set to 1 (x86) or 0 (Any CPU or x64, depending on PE
):
Option | PE | 32BIT
----------|-------|---------
x86 | PE32 | 1
Any CPU | PE32 | 0
x64 | PE32+ | 0
The blog post x64 Development with .NET has some information about corflags
.
Even better, you can use Module.GetPEKind
to determine whether an assembly is PortableExecutableKinds
value PE32Plus
(64-bit), Required32Bit
(32-bit and WOW), or ILOnly
(any CPU) along with other attributes.
Just for clarification, CorFlags.exe is part of the .NET Framework SDK. I have the development tools on my machine, and the simplest way for me determine whether a DLL is 32-bit only is to:
Open the Visual Studio Command Prompt (In Windows: menu Start/Programs/Microsoft Visual Studio/Visual Studio Tools/Visual Studio 2008 Command Prompt)
CD to the directory containing the DLL in question
Run corflags like this:
corflags MyAssembly.dll
You will get output something like this:
Microsoft (R) .NET Framework CorFlags Conversion Tool. Version 3.5.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.
Version : v2.0.50727
CLR Header: 2.5
PE : PE32
CorFlags : 3
ILONLY : 1
32BIT : 1
Signed : 0
As per comments the flags above are to be read as following:
- Any CPU: PE = PE32 and 32BIT = 0
- x86: PE = PE32 and 32BIT = 1
- 64-bit: PE = PE32+ and 32BIT = 0
How about you just write you own? The core of the PE architecture hasn't been seriously changed since its implementation in Windows 95. Here's a C# example:
public static ushort GetPEArchitecture(string pFilePath)
{
ushort architecture = 0;
try
{
using (System.IO.FileStream fStream = new System.IO.FileStream(pFilePath, System.IO.FileMode.Open, System.IO.FileAccess.Read))
{
using (System.IO.BinaryReader bReader = new System.IO.BinaryReader(fStream))
{
if (bReader.ReadUInt16() == 23117) //check the MZ signature
{
fStream.Seek(0x3A, System.IO.SeekOrigin.Current); //seek to e_lfanew.
fStream.Seek(bReader.ReadUInt32(), System.IO.SeekOrigin.Begin); //seek to the start of the NT header.
if (bReader.ReadUInt32() == 17744) //check the PE\0\0 signature.
{
fStream.Seek(20, System.IO.SeekOrigin.Current); //seek past the file header,
architecture = bReader.ReadUInt16(); //read the magic number of the optional header.
}
}
}
}
}
catch (Exception) { /* TODO: Any exception handling you want to do, personally I just take 0 as a sign of failure */}
//if architecture returns 0, there has been an error.
return architecture;
}
}
Now the current constants are:
0x10B - PE32 format.
0x20B - PE32+ format.
But with this method it allows for the possibilities of new constants, just validate the return as you see fit.