Convert pandas.Series from dtype object to float, and errors to nans

Solution 1:

Use pd.to_numeric with errors='coerce'

# Setup
s = pd.Series(['1', '2', '3', '4', '.'])
s

0    1
1    2
2    3
3    4
4    .
dtype: object

pd.to_numeric(s, errors='coerce')

0    1.0
1    2.0
2    3.0
3    4.0
4    NaN
dtype: float64

If you need the NaNs filled in, use Series.fillna.

pd.to_numeric(s, errors='coerce').fillna(0, downcast='infer')

0    1
1    2
2    3
3    4
4    0
dtype: float64

Note, downcast='infer' will attempt to downcast floats to integers where possible. Remove the argument if you don't want that.

From v0.24+, pandas introduces a Nullable Integer type, which allows integers to coexist with NaNs. If you have integers in your column, you can use

pd.__version__
# '0.24.1'

pd.to_numeric(s, errors='coerce').astype('Int32')

0      1
1      2
2      3
3      4
4    NaN
dtype: Int32

There are other options to choose from as well, read the docs for more.


Extension for DataFrames

If you need to extend this to DataFrames, you will need to apply it to each row. You can do this using DataFrame.apply.

# Setup.
np.random.seed(0)
df = pd.DataFrame({
    'A' : np.random.choice(10, 5), 
    'C' : np.random.choice(10, 5), 
    'B' : ['1', '###', '...', 50, '234'], 
    'D' : ['23', '1', '...', '268', '$$']}
)[list('ABCD')]
df

   A    B  C    D
0  5    1  9   23
1  0  ###  3    1
2  3  ...  5  ...
3  3   50  2  268
4  7  234  4   $$

df.dtypes

A     int64
B    object
C     int64
D    object
dtype: object

df2 = df.apply(pd.to_numeric, errors='coerce')
df2

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

df2.dtypes

A      int64
B    float64
C      int64
D    float64
dtype: object

You can also do this with DataFrame.transform; although my tests indicate this is marginally slower:

df.transform(pd.to_numeric, errors='coerce')

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

If you have many columns (numeric; non-numeric), you can make this a little more performant by applying pd.to_numeric on the non-numeric columns only.

df.dtypes.eq(object)

A    False
B     True
C    False
D     True
dtype: bool

cols = df.columns[df.dtypes.eq(object)]
# Actually, `cols` can be any list of columns you need to convert.
cols
# Index(['B', 'D'], dtype='object')

df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
# Alternatively,
# for c in cols:
#     df[c] = pd.to_numeric(df[c], errors='coerce')

df

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

Applying pd.to_numeric along the columns (i.e., axis=0, the default) should be slightly faster for long DataFrames.

Solution 2:

In [30]: pd.Series([1,2,3,4,'.']).convert_objects(convert_numeric=True)
Out[30]: 
0     1
1     2
2     3
3     4
4   NaN
dtype: float64