Replace all occurrences of a string in a pandas dataframe (Python)
Solution 1:
You can use replace
and pass the strings to find/replace as dictionary keys/items:
df.replace({'\n': '<br>'}, regex=True)
For example:
>>> df = pd.DataFrame({'a': ['1\n', '2\n', '3'], 'b': ['4\n', '5', '6\n']})
>>> df
a b
0 1\n 4\n
1 2\n 5
2 3 6\n
>>> df.replace({'\n': '<br>'}, regex=True)
a b
0 1<br> 4<br>
1 2<br> 5
2 3 6<br>
Solution 2:
It seems Pandas has change its API to avoid ambiguity when handling regex. Now you should use:
df.replace({'\n': '<br>'}, regex=True)
For example:
>>> df = pd.DataFrame({'a': ['1\n', '2\n', '3'], 'b': ['4\n', '5', '6\n']})
>>> df
a b
0 1\n 4\n
1 2\n 5
2 3 6\n
>>> df.replace({'\n': '<br>'}, regex=True)
a b
0 1<br> 4<br>
1 2<br> 5
2 3 6<br>