Heisenberg uncertainty principle in $d$ dimensions
Solution 1:
Consider the equation $$ \sum_{i=1}^n\frac12x_i\frac{\mathrm{d}}{\mathrm{d}x_i}|f|^2=\mathrm{Re}\left(\nabla f\cdot\overline{xf}\right)\tag{1} $$ Integrating $(1)$ over $\mathbb{R}^n$ and then integrating by parts on the left side: $$ \begin{align} \frac n2\|f\|_2^2 &=\mathrm{Re}\left(-\int_{\mathbb{R}^n}\nabla f\cdot\overline{xf}\,\mathrm{d}x\right)\\ &\le\left|\int_{\mathbb{R}^n}\nabla f\cdot\overline{xf}\,\mathrm{d}x\right|\\[6pt] &\le\|\nabla f\|_2\|xf\|_2\\[9pt] &=2\pi\|\xi\hat{f}\|_2\|xf\|_2\tag{2} \end{align} $$ Thus, $$ \|\xi\hat{f}\|_2\|xf\|_2\ge\frac{n}{4\pi}\|\hat{f}\|_2\|f\|_2\tag{3} $$ The last inequality says that the $L^2$ support radius for $f$ and $\hat{f}$ cannot have a product less than $\frac{n}{4\pi}$. This inequality is sharp as can be seen using the function $f(x) = e^{-\pi x\cdot x}$, whose Fourier Transform is itself, and whose $L^2$ support radius is $\sqrt{\frac{n}{4\pi}}$.