Extract data from a ggplot

I have made a plot using ggplot2 geom_histogram from a data frame. See sample below and link to the ggplot histogram Need to label each geom_vline with the factors using a nested ddply function and facet wrap

I now need to make a data frame that contains the summarized data used to generate the ggplot above.

Sector2 Family  Year    Length
BUN Acroporidae 2010    332.1300496
BUN Poritidae   2011    141.1467966
BUN Acroporidae 2012    127.479
BUN Acroporidae 2013    142.5940556
MUR Faviidae    2010    304.0405
MUR Faviidae    2011    423.152
MUR Pocilloporidae  2012    576.0295
MUR Poritidae   2013    123.8936667
NTH Faviidae    2010    60.494
NTH Faviidae    2011    27.427
NTH Pocilloporidae  2012    270.475
NTH Poritidae   2013    363.4635

To get values actually plotted you can use function ggplot_build() where argument is your plot.

p <- ggplot(mtcars,aes(mpg))+geom_histogram()+
      facet_wrap(~cyl)+geom_vline(data=data.frame(x=c(20,30)),aes(xintercept=x))

pg <- ggplot_build(p)

This will make list and one of sublists is named data. This sublist contains dataframe with values used in plot, for example, for histrogramm it contains y values (the same as count). If you use facets then column PANEL shows in which facet values are used. If there are more than one geom_ in your plot then data will contains dataframes for each - in my example there is one dataframe for histogramm and another for vlines.

head(pg$data[[1]])
  y count         x ndensity ncount density PANEL group ymin ymax
1 0     0  9.791667        0      0       0     1     1    0    0
2 0     0 10.575000        0      0       0     1     1    0    0
3 0     0 11.358333        0      0       0     1     1    0    0
4 0     0 12.141667        0      0       0     1     1    0    0
5 0     0 12.925000        0      0       0     1     1    0    0
6 0     0 13.708333        0      0       0     1     1    0    0
      xmin     xmax
1  9.40000 10.18333
2 10.18333 10.96667
3 10.96667 11.75000
4 11.75000 12.53333
5 12.53333 13.31667
6 13.31667 14.10000

head(pg$data[[2]])
  xintercept PANEL group xend  x
1         20     1     1   20 20
2         30     1     1   30 30
3         20     2     2   20 20
4         30     2     2   30 30
5         20     3     3   20 20
6         30     3     3   30 30

layer_data is designed precisely for this :

layer_data(p, 1)

It will give you the data of the first layer, same as ggplot_build(p)$data[[1]].

Its source code is indeed precisely:

function (plot, i = 1L) ggplot_build(plot)$data[[i]]

While the other answers get you close, if you are looking for the actual data that was passed to ggplot(), you can use:

ggplot_build(p)$plot$data

require(tidyverse)

p <- ggplot(mtcars,aes(mpg))+geom_histogram()+
  facet_wrap(~cyl)+geom_vline(data=data.frame(x=c(20,30)),aes(xintercept=x))

pg <- ggplot_build(p)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

pg$plot$data
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Created on 2019-03-04 by the reprex package (v0.2.1)

While that isn't useful for an un-modified data frame, if you are piping through a series of mutate()'s or summarize()'s before you get to the ggplot, this can be useful after the fact to show the data.