Tracking progress of joblib.Parallel execution
Yet another step ahead from dano's and Connor's answers is to wrap the whole thing as a context manager:
import contextlib
import joblib
from tqdm import tqdm
@contextlib.contextmanager
def tqdm_joblib(tqdm_object):
"""Context manager to patch joblib to report into tqdm progress bar given as argument"""
class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack):
def __call__(self, *args, **kwargs):
tqdm_object.update(n=self.batch_size)
return super().__call__(*args, **kwargs)
old_batch_callback = joblib.parallel.BatchCompletionCallBack
joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback
try:
yield tqdm_object
finally:
joblib.parallel.BatchCompletionCallBack = old_batch_callback
tqdm_object.close()
Then you can use it like this and don't leave monkey patched code once you're done:
from joblib import Parallel, delayed
with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar:
Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10))
which is awesome I think and it looks similar to tqdm pandas integration.
Why can't you simply use tqdm
? The following worked for me
from joblib import Parallel, delayed
from datetime import datetime
from tqdm import tqdm
def myfun(x):
return x**2
results = Parallel(n_jobs=8)(delayed(myfun)(i) for i in tqdm(range(1000))
100%|██████████| 1000/1000 [00:00<00:00, 10563.37it/s]
The documentation you linked to states that Parallel
has an optional progress meter. It's implemented by using the callback
keyword argument provided by multiprocessing.Pool.apply_async
:
# This is inside a dispatch function
self._lock.acquire()
job = self._pool.apply_async(SafeFunction(func), args,
kwargs, callback=CallBack(self.n_dispatched, self))
self._jobs.append(job)
self.n_dispatched += 1
...
class CallBack(object):
""" Callback used by parallel: it is used for progress reporting, and
to add data to be processed
"""
def __init__(self, index, parallel):
self.parallel = parallel
self.index = index
def __call__(self, out):
self.parallel.print_progress(self.index)
if self.parallel._original_iterable:
self.parallel.dispatch_next()
And here's print_progress
:
def print_progress(self, index):
elapsed_time = time.time() - self._start_time
# This is heuristic code to print only 'verbose' times a messages
# The challenge is that we may not know the queue length
if self._original_iterable:
if _verbosity_filter(index, self.verbose):
return
self._print('Done %3i jobs | elapsed: %s',
(index + 1,
short_format_time(elapsed_time),
))
else:
# We are finished dispatching
queue_length = self.n_dispatched
# We always display the first loop
if not index == 0:
# Display depending on the number of remaining items
# A message as soon as we finish dispatching, cursor is 0
cursor = (queue_length - index + 1
- self._pre_dispatch_amount)
frequency = (queue_length // self.verbose) + 1
is_last_item = (index + 1 == queue_length)
if (is_last_item or cursor % frequency):
return
remaining_time = (elapsed_time / (index + 1) *
(self.n_dispatched - index - 1.))
self._print('Done %3i out of %3i | elapsed: %s remaining: %s',
(index + 1,
queue_length,
short_format_time(elapsed_time),
short_format_time(remaining_time),
))
The way they implement this is kind of weird, to be honest - it seems to assume that tasks will always be completed in the order that they're started. The index
variable that goes to print_progress
is just the self.n_dispatched
variable at the time the job was actually started. So the first job launched will always finish with an index
of 0, even if say, the third job finished first. It also means they don't actually keep track of the number of completed jobs. So there's no instance variable for you to monitor.
I think your best best is to make your own CallBack class, and monkey patch Parallel:
from math import sqrt
from collections import defaultdict
from joblib import Parallel, delayed
class CallBack(object):
completed = defaultdict(int)
def __init__(self, index, parallel):
self.index = index
self.parallel = parallel
def __call__(self, index):
CallBack.completed[self.parallel] += 1
print("done with {}".format(CallBack.completed[self.parallel]))
if self.parallel._original_iterable:
self.parallel.dispatch_next()
import joblib.parallel
joblib.parallel.CallBack = CallBack
if __name__ == "__main__":
print(Parallel(n_jobs=2)(delayed(sqrt)(i**2) for i in range(10)))
Output:
done with 1
done with 2
done with 3
done with 4
done with 5
done with 6
done with 7
done with 8
done with 9
done with 10
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
That way, your callback gets called whenever a job completes, rather than the default one.