$(p\!-\!1\!-\!h)!\,h! \equiv (-1)^{h+1}\!\!\pmod{\! p}\,$ [Wilson Reflection Formula]
Wilson's theorem $\Rightarrow$ any complete system of representatives $\,r_i\,$ of $\rm\color{#c00}{nonzero}$ remainders mod $\,p\,$ has product $\equiv -1,\,$ by $\,r_i\equiv i\,\Rightarrow\,\displaystyle \prod_{i=1}^{p-1} r_i\equiv \prod_{i=1}^{p-1} i \equiv (p-1)!\equiv -1\,$ by inductive extension of Congruence Product Rule. In particular this is true for any sequence of $\,p\,$ consecutive integers, after removing its unique $\rm\color{#c00}{multiple}$ of $\,p.\,$ Your special case is the sequence $$\, \underbrace{\color{#90f}{-h},\,-h\!+\!1,\ldots,\color{#0a0}{-1}}_{\!\!\textstyle\equiv\,\color{#90f}{k\!+\!1},\,k\!+\!2,\cdots,\color{#0a0}{p\!-\!1}}\!\!\!\!,\require{cancel}\color{#c00}{\cancel{0,}} 1,2,\ldots, k\ \ \ \text{whose product is}\,\ \ (-1)^h h!\,k!\equiv -1\qquad$$
since $\,\color{#90f}{-h\equiv k\!+\!1}\,$ by $\,h\!+\!k\!+\!1\equiv p\equiv 0$
Remark $\ $ This is slight reformulation of the Wilson reflection formula mentioned yesterday
$$ k! = (p\!-\!1\!-\!h)! \equiv \frac{(-1)^{h+1}}{h!}\!\!\pmod{\! p},\,\ \ 0\le h< p\ {\rm prime}\qquad $$
Use the fact that
$$h! = (-1)^h (p-1)(p-2) \dots (p-h) \mod p$$