Update a dataframe in pandas while iterating row by row
You can assign values in the loop using df.set_value:
for i, row in df.iterrows():
ifor_val = something
if <condition>:
ifor_val = something_else
df.set_value(i,'ifor',ifor_val)
If you don't need the row values you could simply iterate over the indices of df, but I kept the original for-loop in case you need the row value for something not shown here.
update
df.set_value() has been deprecated since version 0.21.0 you can use df.at() instead:
for i, row in df.iterrows():
ifor_val = something
if <condition>:
ifor_val = something_else
df.at[i,'ifor'] = ifor_val
Pandas DataFrame object should be thought of as a Series of Series. In other words, you should think of it in terms of columns. The reason why this is important is because when you use pd.DataFrame.iterrows
you are iterating through rows as Series. But these are not the Series that the data frame is storing and so they are new Series that are created for you while you iterate. That implies that when you attempt to assign tho them, those edits won't end up reflected in the original data frame.
Ok, now that that is out of the way: What do we do?
Suggestions prior to this post include:
-
pd.DataFrame.set_value
is deprecated as of Pandas version 0.21 -
pd.DataFrame.ix
is deprecated -
pd.DataFrame.loc
is fine but can work on array indexers and you can do better
My recommendation
Use pd.DataFrame.at
for i in df.index:
if <something>:
df.at[i, 'ifor'] = x
else:
df.at[i, 'ifor'] = y
You can even change this to:
for i in df.index:
df.at[i, 'ifor'] = x if <something> else y
Response to comment
and what if I need to use the value of the previous row for the if condition?
for i in range(1, len(df) + 1):
j = df.columns.get_loc('ifor')
if <something>:
df.iat[i - 1, j] = x
else:
df.iat[i - 1, j] = y
A method you can use is itertuples()
, it iterates over DataFrame rows as namedtuples, with index value as first element of the tuple. And it is much much faster compared with iterrows()
. For itertuples()
, each row
contains its Index
in the DataFrame, and you can use loc
to set the value.
for row in df.itertuples():
if <something>:
df.at[row.Index, 'ifor'] = x
else:
df.at[row.Index, 'ifor'] = x
df.loc[row.Index, 'ifor'] = x
Under most cases, itertuples()
is faster than iat
or at
.
Thanks @SantiStSupery, using .at
is much faster than loc
.