Pandas groupby cumulative sum
I would like to add a cumulative sum column to my Pandas dataframe so that:
name | day | no
-----|-----------|----
Jack | Monday | 10
Jack | Tuesday | 20
Jack | Tuesday | 10
Jack | Wednesday | 50
Jill | Monday | 40
Jill | Wednesday | 110
becomes:
Jack | Monday | 10 | 10
Jack | Tuesday | 30 | 40
Jack | Wednesday | 50 | 90
Jill | Monday | 40 | 40
Jill | Wednesday | 110 | 150
I tried various combos of df.groupby
and df.agg(lambda x: cumsum(x))
to no avail.
This should do it, need groupby()
twice:
df.groupby(['name', 'day']).sum() \
.groupby(level=0).cumsum().reset_index()
Explanation:
print(df)
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
# sum per name/day
print( df.groupby(['name', 'day']).sum() )
no
name day
Jack Monday 10
Tuesday 30
Wednesday 50
Jill Monday 40
Wednesday 110
# cumulative sum per name/day
print( df.groupby(['name', 'day']).sum() \
.groupby(level=0).cumsum() )
no
name day
Jack Monday 10
Tuesday 40
Wednesday 90
Jill Monday 40
Wednesday 150
The dataframe resulting from the first sum is indexed by 'name'
and by 'day'
. You can see it by printing
df.groupby(['name', 'day']).sum().index
When computing the cumulative sum, you want to do so by 'name'
, corresponding to the first index (level 0).
Finally, use reset_index
to have the names repeated.
df.groupby(['name', 'day']).sum().groupby(level=0).cumsum().reset_index()
name day no
0 Jack Monday 10
1 Jack Tuesday 40
2 Jack Wednesday 90
3 Jill Monday 40
4 Jill Wednesday 150
Modification to @Dmitry's answer. This is simpler and works in pandas 0.19.0:
print(df)
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
df['no_csum'] = df.groupby(['name'])['no'].cumsum()
print(df)
name day no no_csum
0 Jack Monday 10 10
1 Jack Tuesday 20 30
2 Jack Tuesday 10 40
3 Jack Wednesday 50 90
4 Jill Monday 40 40
5 Jill Wednesday 110 150
This works in pandas 0.16.2
In[23]: print df
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
In[24]: df['no_cumulative'] = df.groupby(['name'])['no'].apply(lambda x: x.cumsum())
In[25]: print df
name day no no_cumulative
0 Jack Monday 10 10
1 Jack Tuesday 20 30
2 Jack Tuesday 10 40
3 Jack Wednesday 50 90
4 Jill Monday 40 40
5 Jill Wednesday 110 150
you should use
df['cum_no'] = df.no.cumsum()
http://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.DataFrame.cumsum.html
Another way of doing it
import pandas as pd
df = pd.DataFrame({'C1' : ['a','a','a','b','b'],
'C2' : [1,2,3,4,5]})
df['cumsum'] = df.groupby(by=['C1'])['C2'].transform(lambda x: x.cumsum())
df