Drop rows with all zeros in pandas data frame
One-liner. No transpose needed:
df.loc[~(df==0).all(axis=1)]
And for those who like symmetry, this also works...
df.loc[(df!=0).any(axis=1)]
It turns out this can be nicely expressed in a vectorized fashion:
> df = pd.DataFrame({'a':[0,0,1,1], 'b':[0,1,0,1]})
> df = df[(df.T != 0).any()]
> df
a b
1 0 1
2 1 0
3 1 1
I think this solution is the shortest :
df= df[df['ColName'] != 0]
I look up this question about once a month and always have to dig out the best answer from the comments:
df.loc[(df!=0).any(1)]
Thanks Dan Allan!
Replace the zeros with nan
and then drop the rows with all entries as nan
.
After that replace nan
with zeros.
import numpy as np
df = df.replace(0, np.nan)
df = df.dropna(how='all', axis=0)
df = df.replace(np.nan, 0)