Find the Fourier cosine transform of the function defined by $f(x)= \frac1{1+x^2}$
Solution 1:
Let $F(\omega)$ be represented by the integral
$$F(\omega)=\sqrt{\frac 2\pi}\int_0^\infty \frac{\cos(\omega x)}{1+x^2}\,dx\tag1$$
Next, given that $\int_0^\infty \frac{x\sin(\omega x)}{1+x^2}\,dx$ converges uniformly for $\omega\ge \omega_0>0$ then
$$\begin{align} F'(\omega)&=-\sqrt{\frac 2\pi}\int_0^\infty \frac{x\sin(\omega x)}{1+x^2}\,dx\\\\ &=-\sqrt{\frac 2\pi}\int_0^\infty \frac{(1+x^2-1)\sin(\omega x)}{x(1+x^2)}\,dx\\\\ &=-\sqrt{\frac 2\pi}\left(\frac\pi 2 -\int_0^\infty \frac{\sin(\omega x)}{x(1+x^2)}\right)\,dx\tag 2 \end{align}$$
And owing to uniform convergence again, we assert that
$$\begin{align} F''(\omega)&=\sqrt{\frac 2\pi}\int_0^\infty \frac{\cos(\omega x)}{1+x^2}\,dx\\\\ &=F(\omega)\tag3 \end{align}$$
Solving the ODE in $(3)$ yields
$$F(\omega)=Ae^{\omega}+Be^{-\omega} \tag 4$$
Now, letting $\omega \to 0$ in $(1)$ and $(2)$ reveals that $F(0)=\sqrt{\frac{\pi}{2} }$ and $F'(0)=-\sqrt{\frac{\pi}{2}}$.
Applying these initial conditions to $(4)$ yields
$$F(\omega)=\sqrt{\frac{\pi}{2}}e^{-|\omega|}$$
And we are done!