Poisson Distribution of sum of two random independent variables $X$, $Y$
Solution 1:
This only holds if $X$ and $Y$ are independent, so we suppose this from now on. We have for $k \ge 0$: \begin{align*} P(X+ Y =k) &= \sum_{i = 0}^k P(X+ Y = k, X = i)\\ &= \sum_{i=0}^k P(Y = k-i , X =i)\\ &= \sum_{i=0}^k P(Y = k-i)P(X=i)\\ &= \sum_{i=0}^k e^{-\mu}\frac{\mu^{k-i}}{(k-i)!}e^{-\lambda}\frac{\lambda^i}{i!}\\ &= e^{-(\mu + \lambda)}\frac 1{k!}\sum_{i=0}^k \frac{k!}{i!(k-i)!}\mu^{k-i}\lambda^i\\ &= e^{-(\mu + \lambda)}\frac 1{k!}\sum_{i=0}^k \binom ki\mu^{k-i}\lambda^i\\ &= \frac{(\mu + \lambda)^k}{k!} \cdot e^{-(\mu + \lambda)} \end{align*} Hence, $X+ Y \sim \mathcal P(\mu + \lambda)$.
Solution 2:
Another approach is to use characteristic functions. If $X\sim \mathrm{po}(\lambda)$, then the characteristic function of $X$ is (if this is unknown, just calculate it) $$ \varphi_X(t)=E[e^{itX}]=e^{\lambda(e^{it}-1)},\quad t\in\mathbb{R}. $$ Now suppose that $X$ and $Y$ are independent Poisson distributed random variables with parameters $\lambda$ and $\mu$ respectively. Then due to the independence we have that $$ \varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)=e^{\lambda(e^{it}-1)}e^{\mu(e^{it}-1)}=e^{(\mu+\lambda)(e^{it}-1)},\quad t\in\mathbb{R}. $$ As the characteristic function completely determines the distribution, we conclude that $X+Y\sim\mathrm{po}(\lambda+\mu)$.