Proof of associativity of convolution
Solution 1:
Using the following convolution of $f$ and $g$ \begin{align*} (f\star g)(t)=\int_0^tf(s)g(t-s)ds \end{align*}
we obtain \begin{align*} \color{blue}{((f\star g)\star h)(t)}&=\int_0^t(f\star g)(s)h(t-s)\,ds\\ &=\int_{s=0}^t\left(\int_{u=0}^sf(u)g(s-u)\,du\right)h(t-s)\,ds\\ &=\int\!\!\!\int_{0\leq u \leq s\leq t}f(u)g(s-u)h(t-s)\,du\,ds\\ &=\int_{u=0}^t\int_{s=u}^tf(u)g(s-u)h(t-s)\,ds\,du\\ &=\int_{u=0}^tf(u)\left(\int_{s=0}^{t-u}g(s)h(t-u-s)\,ds\right)\,du\\ &=\int_{u=0}^tf(u)(g\star h)(t-u)\,du\\ &\,\,\color{blue}{=(f\star (g\star h))(t)} \end{align*}
Note: This corresponds to the discrete case which could be somewhat easier to follow. \begin{align*} (f\star g)(n)=\sum_{k=0}^nf(k)g(n-k) \end{align*}
Here we get
\begin{align*} ((f\star g)\star h)(n)&=\sum_{k=0}^n(f\star g)(k)h(n-k)\\ &=\sum_{k=0}^n\left(\sum_{l=0}^kf(l)g(k-l)\right)h(n-k)\\ &=\sum_{0\leq l \leq k \leq n}f(l)g(k-l)h(n-k)\\ &=\sum_{l=0}^n\sum_{k=l}^nf(l)g(k-l)h(n-k)\\ &=\sum_{l=0}^nf(l)\left(\sum_{k=0}^{n-l}g(k)h(n-k-l)\right)\\ &=\sum_{l=0}^nf(l)(g\star h)(n-l)\\ &=(f\star(g\star h))(n) \end{align*}