Fastest way to search in a string collection

Problem:

I have a text file of around 120,000 users (strings) which I would like to store in a collection and later to perform a search on that collection.

The search method will occur every time the user change the text of a TextBox and the result should be the strings that contain the text in TextBox.

I don't have to change the list, just pull the results and put them in a ListBox.

What I've tried so far:

I tried with two different collections/containers, which I'm dumping the string entries from an external text file (once, of course):

  1. List<string> allUsers;
  2. HashSet<string> allUsers;

With the following LINQ query:

allUsers.Where(item => item.Contains(textBox_search.Text)).ToList();

My search event (fires when user change the search text):

private void textBox_search_TextChanged(object sender, EventArgs e)
{
    if (textBox_search.Text.Length > 2)
    {
        listBox_choices.DataSource = allUsers.Where(item => item.Contains(textBox_search.Text)).ToList();
    }
    else
    {
        listBox_choices.DataSource = null;
    }
}

Results:

Both gave me a poor response time (around 1-3 seconds between each key press).

Question:

Where do you think my bottleneck is? The collection I've used? The search method? Both?

How can I get better performance and more fluent functionality?


You could consider doing the filtering task on a background thread which would invoke a callback method when it's done, or simply restart filtering if input is changed.

The general idea is to be able to use it like this:

public partial class YourForm : Form
{
    private readonly BackgroundWordFilter _filter;

    public YourForm()
    {
        InitializeComponent();

        // setup the background worker to return no more than 10 items,
        // and to set ListBox.DataSource when results are ready

        _filter = new BackgroundWordFilter
        (
            items: GetDictionaryItems(),
            maxItemsToMatch: 10,
            callback: results => 
              this.Invoke(new Action(() => listBox_choices.DataSource = results))
        );
    }

    private void textBox_search_TextChanged(object sender, EventArgs e)
    {
        // this will update the background worker's "current entry"
        _filter.SetCurrentEntry(textBox_search.Text);
    }
}

A rough sketch would be something like:

public class BackgroundWordFilter : IDisposable
{
    private readonly List<string> _items;
    private readonly AutoResetEvent _signal = new AutoResetEvent(false);
    private readonly Thread _workerThread;
    private readonly int _maxItemsToMatch;
    private readonly Action<List<string>> _callback;

    private volatile bool _shouldRun = true;
    private volatile string _currentEntry = null;

    public BackgroundWordFilter(
        List<string> items,
        int maxItemsToMatch,
        Action<List<string>> callback)
    {
        _items = items;
        _callback = callback;
        _maxItemsToMatch = maxItemsToMatch;

        // start the long-lived backgroud thread
        _workerThread = new Thread(WorkerLoop)
        {
            IsBackground = true,
            Priority = ThreadPriority.BelowNormal
        };

        _workerThread.Start();
    }

    public void SetCurrentEntry(string currentEntry)
    {
        // set the current entry and signal the worker thread
        _currentEntry = currentEntry;
        _signal.Set();
    }

    void WorkerLoop()
    {
        while (_shouldRun)
        {
            // wait here until there is a new entry
            _signal.WaitOne();
            if (!_shouldRun)
                return;

            var entry = _currentEntry;
            var results = new List<string>();

            // if there is nothing to process,
            // return an empty list
            if (string.IsNullOrEmpty(entry))
            {
                _callback(results);
                continue;
            }

            // do the search in a for-loop to 
            // allow early termination when current entry
            // is changed on a different thread
            foreach (var i in _items)
            {
                // if matched, add to the list of results
                if (i.Contains(entry))
                    results.Add(i);

                // check if the current entry was updated in the meantime,
                // or we found enough items
                if (entry != _currentEntry || results.Count >= _maxItemsToMatch)
                    break;
            }

            if (entry == _currentEntry)
                _callback(results);
        }
    }

    public void Dispose()
    {
        // we are using AutoResetEvent and a background thread
        // and therefore must dispose it explicitly
        Dispose(true);
    }

    private void Dispose(bool disposing)
    {
        if (!disposing)
            return;

        // shutdown the thread
        if (_workerThread.IsAlive)
        {
            _shouldRun = false;
            _currentEntry = null;
            _signal.Set();
            _workerThread.Join();
        }

        // if targetting .NET 3.5 or older, we have to
        // use the explicit IDisposable implementation
        (_signal as IDisposable).Dispose();
    }
}

Also, you should actually dispose the _filter instance when the parent Form is disposed. This means you should open and edit your Form's Dispose method (inside the YourForm.Designer.cs file) to look something like:

// inside "xxxxxx.Designer.cs"
protected override void Dispose(bool disposing)
{
    if (disposing)
    {
        if (_filter != null)
            _filter.Dispose();

        // this part is added by Visual Studio designer
        if (components != null)
            components.Dispose();
    }

    base.Dispose(disposing);
}

On my machine, it works pretty quickly, so you should test and profile this before going for a more complex solution.

That being said, a "more complex solution" would possibly be to store the last couple of results in a dictionary, and then only filter them if it turns out that the new entry differs by only the first of last character.


I've done some testing, and searching a list of 120,000 items and populating a new list with the entries takes a negligible amount of time (about a 1/50th of a second even if all strings are matched).

The problem you're seeing must therefore be coming from the populating of the data source, here:

listBox_choices.DataSource = ...

I suspect you are simply putting too many items into the listbox.

Perhaps you should try limiting it to the first 20 entries, like so:

listBox_choices.DataSource = allUsers.Where(item => item.Contains(textBox_search.Text))
    .Take(20).ToList();

Also note (as others have pointed out) that you are accessing the TextBox.Text property for each item in allUsers. This can easily be fixed as follows:

string target = textBox_search.Text;
listBox_choices.DataSource = allUsers.Where(item => item.Contains(target))
    .Take(20).ToList();

However, I timed how long it takes to access TextBox.Text 500,000 times and it only took 0.7 seconds, far less than the 1 - 3 seconds mentioned in the OP. Still, this is a worthwhile optimisation.


Use Suffix tree as index. Or rather just build a sorted dictionary that associates every suffix of every name with the list of corresponding names.

For input:

Abraham
Barbara
Abram

The structure would look like:

a -> Barbara
ab -> Abram
abraham -> Abraham
abram -> Abram
am -> Abraham, Abram
aham -> Abraham
ara -> Barbara
arbara -> Barbara
bara -> Barbara
barbara -> Barbara
bram -> Abram
braham -> Abraham
ham -> Abraham
m -> Abraham, Abram
raham -> Abraham
ram -> Abram
rbara -> Barbara

Search algorithm

Assume user input "bra".

  1. Bisect the dictionary on user input to find the user input or the position where it could go. This way we find "barbara" - last key lower than "bra". It is called lower bound for "bra". Search will take logarithmic time.
  2. Iterate from the found key onwards until user input no longer matches. This would give "bram" -> Abram and "braham" -> Abraham.
  3. Concatenate iteration result (Abram, Abraham) and output it.

Such trees are designed for quick search of substrings. It performance is close to O(log n). I believe this approach will work fast enough to be used by GUI thread directly. Moreover it will work faster then threaded solution due to absence of synchronization overhead.