Fast arbitrary distribution random sampling (inverse transform sampling)

The random module (http://docs.python.org/2/library/random.html) has several fixed functions to randomly sample from. For example random.gauss will sample random point from a normal distribution with a given mean and sigma values.

I'm looking for a way to extract a number N of random samples between a given interval using my own distribution as fast as possible in python. This is what I mean:

def my_dist(x):
    # Some distribution, assume c1,c2,c3 and c4 are known.
    f = c1*exp(-((x-c2)**c3)/c4)
    return f

# Draw N random samples from my distribution between given limits a,b.
N = 1000
N_rand_samples = ran_func_sample(my_dist, a, b, N)

where ran_func_sample is what I'm after and a, b are the limits from which to draw the samples. Is there anything of that sort in python?


Solution 1:

You need to use Inverse transform sampling method to get random values distributed according to a law you want. Using this method you can just apply inverted function to random numbers having standard uniform distribution in the interval [0,1].

After you find the inverted function, you get 1000 numbers distributed according to the needed distribution this obvious way:

[inverted_function(random.random()) for x in range(1000)]

More on Inverse Transform Sampling:

  • http://en.wikipedia.org/wiki/Inverse_transform_sampling

Also, there is a good question on StackOverflow related to the topic:

  • Pythonic way to select list elements with different probability

Solution 2:

This code implements the sampling of n-d discrete probability distributions. By setting a flag on the object, it can also be made to be used as a piecewise constant probability distribution, which can then be used to approximate arbitrary pdf's. Well, arbitrary pdfs with compact support; if you efficiently want to sample extremely long tails, a non-uniform description of the pdf would be required. But this is still efficient even for things like airy-point-spread functions (which I created it for, initially). The internal sorting of values is absolutely critical there to get accuracy; the many small values in the tails should contribute substantially, but they will get drowned out in fp accuracy without sorting.

class Distribution(object):
    """
    draws samples from a one dimensional probability distribution,
    by means of inversion of a discrete inverstion of a cumulative density function

    the pdf can be sorted first to prevent numerical error in the cumulative sum
    this is set as default; for big density functions with high contrast,
    it is absolutely necessary, and for small density functions,
    the overhead is minimal

    a call to this distibution object returns indices into density array
    """
    def __init__(self, pdf, sort = True, interpolation = True, transform = lambda x: x):
        self.shape          = pdf.shape
        self.pdf            = pdf.ravel()
        self.sort           = sort
        self.interpolation  = interpolation
        self.transform      = transform

        #a pdf can not be negative
        assert(np.all(pdf>=0))

        #sort the pdf by magnitude
        if self.sort:
            self.sortindex = np.argsort(self.pdf, axis=None)
            self.pdf = self.pdf[self.sortindex]
        #construct the cumulative distribution function
        self.cdf = np.cumsum(self.pdf)
    @property
    def ndim(self):
        return len(self.shape)
    @property
    def sum(self):
        """cached sum of all pdf values; the pdf need not sum to one, and is imlpicitly normalized"""
        return self.cdf[-1]
    def __call__(self, N):
        """draw """
        #pick numbers which are uniformly random over the cumulative distribution function
        choice = np.random.uniform(high = self.sum, size = N)
        #find the indices corresponding to this point on the CDF
        index = np.searchsorted(self.cdf, choice)
        #if necessary, map the indices back to their original ordering
        if self.sort:
            index = self.sortindex[index]
        #map back to multi-dimensional indexing
        index = np.unravel_index(index, self.shape)
        index = np.vstack(index)
        #is this a discrete or piecewise continuous distribution?
        if self.interpolation:
            index = index + np.random.uniform(size=index.shape)
        return self.transform(index)


if __name__=='__main__':
    shape = 3,3
    pdf = np.ones(shape)
    pdf[1]=0
    dist = Distribution(pdf, transform=lambda i:i-1.5)
    print dist(10)
    import matplotlib.pyplot as pp
    pp.scatter(*dist(1000))
    pp.show()

And as a more real-world relevant example:

x = np.linspace(-100, 100, 512)
p = np.exp(-x**2)
pdf = p[:,None]*p[None,:]     #2d gaussian
dist = Distribution(pdf, transform=lambda i:i-256)
print dist(1000000).mean(axis=1)    #should be in the 1/sqrt(1e6) range
import matplotlib.pyplot as pp
pp.scatter(*dist(1000))
pp.show()

Solution 3:

import numpy as np
import scipy.interpolate as interpolate

def inverse_transform_sampling(data, n_bins, n_samples):
    hist, bin_edges = np.histogram(data, bins=n_bins, density=True)
    cum_values = np.zeros(bin_edges.shape)
    cum_values[1:] = np.cumsum(hist*np.diff(bin_edges))
    inv_cdf = interpolate.interp1d(cum_values, bin_edges)
    r = np.random.rand(n_samples)
    return inv_cdf(r)

So if we give our data sample that has a specific distribution, the inverse_transform_sampling function will return a dataset with exactly the same distribution. Here the advantage is that we can get our own sample size by specifying it in the n_samples variable.