How to convert index of a pandas dataframe into a column

Solution 1:

either:

df['index1'] = df.index

or, .reset_index:

df.reset_index(level=0, inplace=True)

so, if you have a multi-index frame with 3 levels of index, like:

>>> df
                       val
tick       tag obs        
2016-02-26 C   2    0.0139
2016-02-27 A   2    0.5577
2016-02-28 C   6    0.0303

and you want to convert the 1st (tick) and 3rd (obs) levels in the index into columns, you would do:

>>> df.reset_index(level=['tick', 'obs'])
          tick  obs     val
tag                        
C   2016-02-26    2  0.0139
A   2016-02-27    2  0.5577
C   2016-02-28    6  0.0303

Solution 2:

To provide a bit more clarity, let's look at a DataFrame with two levels in its index (a MultiIndex).

index = pd.MultiIndex.from_product([['TX', 'FL', 'CA'], 
                                    ['North', 'South']], 
                                   names=['State', 'Direction'])

df = pd.DataFrame(index=index, 
                  data=np.random.randint(0, 10, (6,4)), 
                  columns=list('abcd'))

enter image description here

The reset_index method, called with the default parameters, converts all index levels to columns and uses a simple RangeIndex as new index.

df.reset_index()

enter image description here

Use the level parameter to control which index levels are converted into columns. If possible, use the level name, which is more explicit. If there are no level names, you can refer to each level by its integer location, which begin at 0 from the outside. You can use a scalar value here or a list of all the indexes you would like to reset.

df.reset_index(level='State') # same as df.reset_index(level=0)

enter image description here

In the rare event that you want to preserve the index and turn the index into a column, you can do the following:

# for a single level
df.assign(State=df.index.get_level_values('State'))

# for all levels
df.assign(**df.index.to_frame())

Solution 3:

For MultiIndex you can extract its subindex using

df['si_name'] = R.index.get_level_values('si_name') 

where si_name is the name of the subindex.

Solution 4:

rename_axis + reset_index

You can first rename your index to a desired label, then elevate to a series:

df = df.rename_axis('index1').reset_index()

print(df)

   index1         gi  ptt_loc
0       0  384444683      593
1       1  384444684      594
2       2  384444686      596

This works also for MultiIndex dataframes:

print(df)
#                        val
# tick       tag obs        
# 2016-02-26 C   2    0.0139
# 2016-02-27 A   2    0.5577
# 2016-02-28 C   6    0.0303

df = df.rename_axis(['index1', 'index2', 'index3']).reset_index()

print(df)

       index1 index2  index3     val
0  2016-02-26      C       2  0.0139
1  2016-02-27      A       2  0.5577
2  2016-02-28      C       6  0.0303