Select elements of numpy array via boolean mask array
Solution 1:
You probably want something like this:
>>> a = np.array([True, True, True, False, False])
>>> b = np.array([[1,2,3,4,5], [1,2,3,4,5]])
>>> b[:,a]
array([[1, 2, 3],
[1, 2, 3]])
Note that for this kind of indexing to work, it needs to be an ndarray
, like you were using, not a list
, or it'll interpret the False
and True
as 0
and 1
and give you those columns:
>>> b[:,[True, True, True, False, False]]
array([[2, 2, 2, 1, 1],
[2, 2, 2, 1, 1]])
Solution 2:
You can use numpy.ma
module and use np.ma.masked_array
function to do so.
>>> x = np.array([1, 2, 3, -1, 5])
>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])
masked_array(data=[1, 2, 3, --, 5], mask=[False, False, False, True, False], fill_value=999999)