Using malloc for allocation of multi-dimensional arrays with different row lengths
I have the following C
code :
int *a;
size_t size = 2000*sizeof(int);
a = malloc(size);
which works fine. But if I have the following :
char **b = malloc(2000*sizeof *b);
where every element of b
has different length.
How is it possible to do the same thing for b
as i did for a
; i.e. the following code would hold correct?
char *c;
size_t size = 2000*sizeof(char *);
c = malloc(size);
First, you need to allocate array of pointers like char **c = malloc( N * sizeof( char* ))
, then allocate each row with a separate call to malloc
, probably in the loop:
/* N is the number of rows */
/* note: c is char** */
if (( c = malloc( N*sizeof( char* ))) == NULL )
{ /* error */ }
for ( i = 0; i < N; i++ )
{
/* x_i here is the size of given row, no need to
* multiply by sizeof( char ), it's always 1
*/
if (( c[i] = malloc( x_i )) == NULL )
{ /* error */ }
/* probably init the row here */
}
/* access matrix elements: c[i] give you a pointer
* to the row array, c[i][j] indexes an element
*/
c[i][j] = 'a';
If you know the total number of elements (e.g. N*M
) you can do this in a single allocation.
The typical form for dynamically allocating an NxM array of type T is
T **a = malloc(sizeof *a * N);
if (a)
{
for (i = 0; i < N; i++)
{
a[i] = malloc(sizeof *a[i] * M);
}
}
If each element of the array has a different length, then replace M with the appropriate length for that element; for example
T **a = malloc(sizeof *a * N);
if (a)
{
for (i = 0; i < N; i++)
{
a[i] = malloc(sizeof *a[i] * length_for_this_element);
}
}