Getting Google Spreadsheet CSV into A Pandas Dataframe
I uploaded a file to Google spreadsheets (to make a publically accessible example IPython Notebook, with data) I was using the file in it's native form could be read into a Pandas Dataframe. So now I use the following code to read the spreadsheet, works fine but just comes in as string,, and I'm not having any luck trying to get it back into a dataframe (you can get the data)
import requests
r = requests.get('https://docs.google.com/spreadsheet/ccc?key=0Ak1ecr7i0wotdGJmTURJRnZLYlV3M2daNTRubTdwTXc&output=csv')
data = r.content
The data ends up looking like: (1st row headers)
',City,region,Res_Comm,mkt_type,Quradate,National_exp,Alabama_exp,Sales_exp,Inventory_exp,Price_exp,Credit_exp\n0,Dothan,South_Central-Montgomery-Auburn-Wiregrass-Dothan,Residential,Rural,1/15/2010,2,2,3,2,3,3\n10,Foley,South_Mobile-Baldwin,Residential,Suburban_Urban,1/15/2010,4,4,4,4,4,3\n12,Birmingham,North_Central-Birmingham-Tuscaloosa-Anniston,Commercial,Suburban_Urban,1/15/2010,2,2,3,2,2,3\n
The native pandas code that brings in the disk resident file looks like:
df = pd.io.parsers.read_csv('/home/tom/Dropbox/Projects/annonallanswerswithmaster1012013.csv',index_col=0,parse_dates=['Quradate'])
A "clean" solution would be helpful to many to provide an easy way to share datasets for Pandas use! I tried a bunch of alternative with no success and I'm pretty sure I'm missing something obvious again.
Just a Update note The new Google spreadsheet has a different URL pattern Just use this in place of the URL in the above example and or the below answer and you should be fine here is an example:
https://docs.google.com/spreadsheets/d/177_dFZ0i-duGxLiyg6tnwNDKruAYE-_Dd8vAQziipJQ/export?format=csv&id
see solution below from @Max Ghenis which just used pd.read_csv, no need for StringIO or requests...
Solution 1:
Seems to work for me without the StringIO
:
test = pd.read_csv('https://docs.google.com/spreadsheets/d/' +
'0Ak1ecr7i0wotdGJmTURJRnZLYlV3M2daNTRubTdwTXc' +
'/export?gid=0&format=csv',
# Set first column as rownames in data frame
index_col=0,
# Parse column values to datetime
parse_dates=['Quradate']
)
test.head(5) # Same result as @TomAugspurger
BTW, including the ?gid=
enables importing different sheets, find the gid in the URL.
Solution 2:
You can use read_csv()
on a StringIO
object:
from io import BytesIO
import requests
import pandas as pd
r = requests.get('https://docs.google.com/spreadsheet/ccc?key=0Ak1ecr7i0wotdGJmTURJRnZLYlV3M2daNTRubTdwTXc&output=csv')
data = r.content
In [10]: df = pd.read_csv(BytesIO(data), index_col=0,parse_dates=['Quradate'])
In [11]: df.head()
Out[11]:
City region Res_Comm \
0 Dothan South_Central-Montgomery-Auburn-Wiregrass-Dothan Residential
10 Foley South_Mobile-Baldwin Residential
12 Birmingham North_Central-Birmingham-Tuscaloosa-Anniston Commercial
38 Brent North_Central-Birmingham-Tuscaloosa-Anniston Residential
44 Athens North_Huntsville-Decatur-Florence Residential
mkt_type Quradate National_exp Alabama_exp Sales_exp \
0 Rural 2010-01-15 00:00:00 2 2 3
10 Suburban_Urban 2010-01-15 00:00:00 4 4 4
12 Suburban_Urban 2010-01-15 00:00:00 2 2 3
38 Rural 2010-01-15 00:00:00 3 3 3
44 Suburban_Urban 2010-01-15 00:00:00 4 5 4
Inventory_exp Price_exp Credit_exp
0 2 3 3
10 4 4 3
12 2 2 3
38 3 3 2
44 4 4 4
Solution 3:
Open the specific sheet you want in your browser. Make sure it's at least viewable by anyone with the link. Copy and paste the URL. You'll get something like https://docs.google.com/spreadsheets/d/BLAHBLAHBLAH/edit#gid=NUMBER
.
sheet_url = 'https://docs.google.com/spreadsheets/d/BLAHBLAHBLAH/edit#gid=NUMBER'
First we turn that into a CSV export URL, like https://docs.google.com/spreadsheets/d/BLAHBLAHBLAH/export?format=csv&gid=NUMBER
:
csv_export_url = sheet_url.replace('/edit#gid=', '/export?format=csv&gid=')
Then we pass it to pd.read_csv, which can take a URL.
df = pd.read_csv(csv_export_url)
This will break if Google changes its API (it seems undocumented), and may give unhelpful errors if a network failure occurs.
Solution 4:
My approach is a bit different. I just used pandas.Dataframe() but obviously needed to install and import gspread. And it worked fine!
gsheet = gs.open("Name")
Sheet_name ="today"
wsheet = gsheet.worksheet(Sheet_name)
dataframe = pd.DataFrame(wsheet.get_all_records())
Solution 5:
I have been using the following utils and it worked so far:
def load_from_gspreadsheet(sheet_name, key):
url = 'https://docs.google.com/spreadsheets/d/{key}/gviz/tq?tqx=out:csv&sheet={sheet_name}&headers=1'.format(
key=key, sheet_name=sheet_name.replace(' ', '%20'))
log.info('Loading google spreadsheet from {}'.format(url))
df = pd.read_csv(url)
return df.drop([col for col in df.columns if col.startswith('Unnamed')], axis=1)
You must specify the sheet_name and the key. The key is the string you get from the url in the following path: https://docs.google.com/spreadsheets/d/{key}/edit/
.
You can change the value of headers if you have more than one row for the column names but I am not sure if it still work with multi-headers.
It may brake if Google will change their APIs.
Also please bear in mind that your spreadsheet must be public, everyone with the link can read it.