Are these two quotient rings of $\Bbb Z[x]$ isomorphic?
Solution 1:
Hint $\ \ 2\:$ is invertible in $\rm\ \Bbb{Z}[x]/(2x^2\!+7),\:$ but not in $\rm\, \Bbb{Z}[x]/(x^2\!+7)\,\cong\, \Bbb Z[\sqrt{-7}].\:$ Indeed, in the first ring $\rm\:2(x^2\!+4) = 1.\:$ In the second, $\rm\:2\alpha = 1\:\Rightarrow\:2\alpha'=1\:$ $\Rightarrow$ $\rm\:4\alpha\alpha' = 1,\:$ $\rm\: \alpha \alpha'\in \Bbb Z,\:$ contradiction, where $\,\rm (a+b\sqrt{-7})' = a-b\sqrt{-7}\,$ is the conjugation automorphism.
Remark $\ $ The proof is accessible at high-school level by eliminating use of the conjugation automorphism in $\rm\,R \cong \Bbb Z[\sqrt{-7}].\:$ If $\,2\,$ is invertible in $\rm\,R\,$ then $\rm\:2\,(a\!+\!b\sqrt{-7})= 1,\,$ for $\rm\, a,b\in \Bbb Z.\:$ Therefore $\rm\:b\ne 0\ $ (else $\rm\:2a=1,\ a\in\Bbb Z)\ $ hence $\rm\,\sqrt{-7}\, =\, (1\!-\!2a)/(2b)\in \Bbb Q,\,$ contradiction.
This elementary approach may be helpful for readers not familiar with the more advanced techniques applied in the other answers.
Solution 2:
a) The ring $\mathbb{Z}[x]/(x^2+7)=\mathbb Z[\xi]$ is finitely generated as a $\mathbb Z$-module, since $\mathbb Z[\xi]=\mathbb Z\cdot1\oplus \mathbb Z\cdot \xi$ Thus the ring $\mathbb Z[\xi]$ integral over $\mathbb{Z}$.
b) On the other hand the ring $\mathbb{Z}[x]/(2x^2+7)=\mathbb{Z}[\eta]$ contains the element $\eta^2=-\frac {7}{2}$ which is not integral over $\mathbb Z$, since the the only numbers in $\mathbb Q$ integral over $\mathbb Z$ are the elements of $\mathbb Z$ .
So the ring $\mathbb Z[\eta]$ is not integral over $\mathbb Z$.
Hence our two rings are not isomorphic.