Showing that the roots of a polynomial with descending positive coefficients lie in the unit disc.

Solution 1:

The thing to do is to look instead at the polynomial $$Q(z) = (1-z)P(z) = (1-z)\left(\sum_{i=0}^n a_iz^i \right) = a_0 -a_n z^{n+1} + \sum_{i=1}^n (a_i-a_{i-1})z^i$$ Now, let $|z|>1$ be a root of $P(z)$, and hence a root of $Q(z)$. Therefore, we have $a_0 + \sum_{i=1}^n (a_i-a_{i-1})z^i = a_n z^{n+1}$ Then, we have \begin{aligned} |a_n z^{n+1}| &= \left|a_0 + \sum_{i=1}^n (a_i-a_{i-1})z^i\right| \\ & \le a_0 + \sum_{i=1}^n (a_i-a_{i-1})|z^i| \\ & < a_0|z^n| + \sum_{i=1}^n (a_i-a_{i-1})|z^n| \\ & = |a_n z^n|\end{aligned} a contradiction.

For a nice article on integer polynomials, see here. (Your problem is Proposition 10)