Proving that ${x +y+n- 1 \choose n}= \sum_{k=0}^n{x+n-k-1 \choose n-k}{y+k-1 \choose k} $
How can I prove that $${x +y+n- 1 \choose n}= \sum_{k=0}^n{x+n-k-1 \choose n-k}{y+k-1 \choose k} $$
I tried the following:
We use the falling factorial power: $$y^{\underline k}=\underbrace{y(y-1)(y-2)\ldots(y-k+1)}_{k\text{ factors}},$$ so that $\binom{y}k=\frac{y^{\underline k}}{k!} .$
Then
$${x +y+n- 1 \choose n} = \frac{(x +y+n- 1)!}{n! ((x +y+n- 1) - n)!} = \frac{1}{n!}. (x +y+n \color{#f00}{-1})^{\underline n} $$
And
$$ {x+n-k-1 \choose n-k}{y+k-1 \choose k}$$ $$\frac{1}{(n-k)!}.(x+n-k-1)^{\underline{n-k}}.\frac{1}{k!}.(y+k-1)^{\underline{k}}$$ $$\frac{1}{k!.(n-k)!}.(x+n-k-1)^{\underline{n-k}}.(y+k-1)^{\underline{k}}$$ $$\sum_{k=0}^n{n \choose k}(x+n-k-1)^{\underline{n-k}}.(y+k-1)^{\underline{k}}$$
According to the Binomial-coefficients:
$$ ((x+n-k-1) + (y+k-1))^{\underline{n}}$$ $$ (x+y+n\color{#f00}{- 2})^{\underline{n}}$$
What is wrong ? und How can I continue? :/
Solution 1:
Using Negative Binomial Coefficients and Vandermonde's Identity, we get
$$
\begin{align}
\sum_{k=0}^n\binom{x+n-k-1}{n-k}\binom{y+k-1}{k}
&=\sum_{k=0}^n(-1)^{n-k}\binom{-x}{n-k}(-1)^k\binom{-y}{k}\tag{1}\\
&=(-1)^n\sum_{k=0}^n\binom{-x}{n-k}\binom{-y}{k}\tag{2}\\
&=(-1)^n\binom{-x-y}{n}\tag{3}\\
&=\binom{n+x+y-1}{n}\tag{4}
\end{align}
$$
Explanation:
$(1)$: Negative Binomial Coefficient conversion
$(2)$: algebra
$(3)$: Vandermonde's Identity
$(4)$: Negative Binomial Coefficient conversion
Solution 2:
Hint: The binomial formula with the Cauchy product \begin{align*} (x+y)^n=\sum_{k=0}^n\binom{n}{k}x^ky^{n-k} \end{align*} does not use falling factorials $x^{\underline{k}}$ resp. $y^{\underline{n-k}}$.
Here is a step by step answer similar to that by @MarkoRiedel. It's convenient to use the coefficient of operator $[z^k]$ to denote the coefficient of $z^k$ in a series. This way we can write e.g. \begin{align*} \binom{n}{k}=[z^k](1+z)^n \end{align*}
We obtain
\begin{align*} \sum_{k=0}^{n}&\binom{x-1+n-k}{n-k}\binom{y-1+k}{k}\\ &=\sum_{k=0}^{\infty}\binom{x-1+n-k}{n-k}\binom{-y}{k}(-1)^k\tag{1}\\ &=\sum_{k=0}^\infty [t^{n-k}](1+t)^{x-1+n-k}[z^k](1+z)^{-y}(-1)^k\tag{2}\\ &=[t^n](1+t)^{x-1+n}\sum_{k=0}^\infty(-1)^kt^k(1+t)^{-k}[z^k](1+z)^{-y}\tag{3}\\ &=[t^n](1+t)^{x-1+n}\sum_{k=0}^\infty\left(-\frac{t}{1+t}\right)^k[z^k](1+z)^{-y}\\ &=[t^n](1+t)^{x-1+n}\left(1-\frac{t}{1+t}\right)^{-y}\tag{4}\\ &=[t^n](1+t)^{x+y-1+n}\tag{5}\\ &=\binom{x+y-1+n}{n} \end{align*} and the claim follows.
Comment:
In (1) we use the binomial identity $\binom{-p}{q}(-1)^q=\binom{p+q-1}{q}$ and we extend the upper limit of the series to $\infty$ without changing anything since we are adding zeros only.
In (2) we apply the coefficient of operator twice.
In (3) we do some rearrangements by using the linearity of the coefficient of operator and we also use the rule \begin{align*} [z^{p-q}]A(z)=[z^p]z^{q}A(z) \end{align*}
In (4) we apply the substitution rule \begin{align*} A(t)=\sum_{k=0}^\infty a_kt^k=\sum_{k=0}^\infty t^k[z^k]A(z)\\ \end{align*} with $z=-\frac{t}{1+t}$.
In (5) we do some simplifications.
In (6) we select the coefficient from $t^n$.
Solution 3:
We have $$\sum_{k=0}^n {y-1+k\choose k} {x-1+n-k\choose n-k} = \sum_{k=0}^n [z^{k}] \frac{1}{(1-z)^y} [z^{n-k}] \frac{1}{(1-z)^x} \\ = [z^n] \frac{1}{(1-z)^y} \frac{1}{(1-z)^x} = [z^n] \frac{1}{(1-z)^{x+y}} ={x+y-1+n\choose n}.$$