Density2d Plot using another variable for the fill (similar to geom_tile)?

I am trying to plot a map for my final project, and I am trying to do a heat map of crime by BLock in the US.

For each block, I have Lat, Lon, and a prediction of the crime rate. It follows this structure:

Lat           /      Lon          /         Prediction
-76.0         /     40.0          /        125   
-76.120       /      40.5          /       145
-75.98        /      41.001        /         95

And so on.

Is there a way to plot a heat map showing the Prediction as the fill?

I think this is what geom_tiles do, but that geom is not working (maybe because the points are not evenly spaced)

Any help would be more than welcome. Please!

EDIT
This is what I have tried so far:
-geom_density2d:

ggplot(ny2,aes(x=GEO_CENTROID_LON,y=GEO_CENTROID_LON,fill=prediction))+geom_density2d()  

Gives me the error: "Error in unit(tic_pos.c, "mm") : 'x' and 'units' must have length > 0"

-geom_tiles:

ggplot(ny2,aes(x=GEO_CENTROID_LON,y=GEO_CENTROID_LON,fill=prediction))+geom_tile()  

Produces a plot with the proper scale, but not data shown on the map.

Regarding chloropeth, it would work if I happend to have block level information for the whole US, but I can't find such data.

SUBSAMPLE of data can be found here


First, let's load the data:

data<-read.csv(file = "NY subsample.csv")

Data points

Then, let's try just plotting the basic locations and values of the data:

require('ggplot2')
# start with points
pred.points <- ggplot(data = data,
       aes(x = GEO_CENTROID_LON,
           y = GEO_CENTROID_LAT,
           colour = prediction)) + 
  geom_point()
print(pred.points)
ggsave(filename = "NYSubsamplePredPoints.png",
       plot = p2,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

which gives us this: enter image description here

Binned data

Then, you can try to plot the mean in a 2-D region using stat_summary2d():

pred.stat <- ggplot(data = data,
                      aes(x = GEO_CENTROID_LON,
                          y = GEO_CENTROID_LAT,
                          z = prediction)) + 
  stat_summary2d(fun = mean)
print(pred.stat)
ggsave(filename = "NYSubsamplePredStat.png",
       plot = pred.stat,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

which gives us this plot of the mean value of prediction in each box.

enter image description here

Binned and with custom colormap and correct projection

Next, we can set the bin size, color scales, and fix the projection:

# refine breaks and palette ----
require('RColorBrewer')
YlOrBr <- c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404")
pred.stat.bin.width <- ggplot(data = data,
                    aes(x = GEO_CENTROID_LON,
                        y = GEO_CENTROID_LAT,
                        z = prediction)) + 
  stat_summary2d(fun = median, binwidth = c(.05, .05)) + 
  scale_fill_gradientn(name = "Median",
                       colours = YlOrBr,
                       space = "Lab") +
  coord_map()
print(pred.stat.bin.width)
ggsave(filename = "NYSubsamplePredStatBinWidth.png",
       plot = pred.stat.bin.width,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

which gives us this:

enter image description here

Plotted over a base map

And last of all, here's the data overlain on a map.

require('ggmap')
map.in <- get_map(location = c(min(data$GEO_CENTROID_LON),
                               min(data$GEO_CENTROID_LAT),
                               max(data$GEO_CENTROID_LON),
                               max(data$GEO_CENTROID_LAT)),
                  source = "osm")
theme_set(theme_bw(base_size = 8))
pred.stat.map <- ggmap(map.in) %+% data + 
  aes(x = GEO_CENTROID_LON,
      y = GEO_CENTROID_LAT,
      z = prediction) +
  stat_summary2d(fun = median, 
                 binwidth = c(.05, .05),
                 alpha = 0.5) + 
  scale_fill_gradientn(name = "Median",
                       colours = YlOrBr,
                       space = "Lab") + 
  labs(x = "Longitude",
       y = "Latitude") +
  coord_map()
print(pred.stat.map)
ggsave(filename = "NYSubsamplePredStatMap.png",
       plot = pred.stat.map,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

enter image description here

Setting the colormap

And finally, to set the colormap to something like http://www.cadmaps.com/images/HeatMapImage.jpg, we can take a guess at the colormap:

colormap <- c("Violet","Blue","Green","Yellow","Red","White")

and do the plotting again:

pred.stat.map.final <- ggmap(map.in) %+% data + 
  aes(x = GEO_CENTROID_LON,
      y = GEO_CENTROID_LAT,
      z = prediction) +
  stat_summary2d(fun = median, 
                 binwidth = c(.05, .05),
                 alpha = 1.0) + 
  scale_fill_gradientn(name = "Median",
                       colours = colormap,
                       space = "Lab") + 
  labs(x = "Longitude",
       y = "Latitude") +
  coord_map()
print(pred.stat.map.final)

enter image description here


I'm still not really sure what you're aiming at, but if you want a map with some points and contours plotted on it, that is possible. The output looks like the screenshot below; obviously there are many ways that could be tweaked. (The state shown is Connecticut.)

screenshot

Code follows:

library(ggplot2)
library(maps)

mytext <- "GEOGRAPHY_ID GEO_CENTROID_LAT    GEO_CENTROID_LON    prediction
90012003024 41.364744   -73.373055  90.1
90012052001 41.488312   -73.381211  97.5
90012452002 41.300794   -73.467077  70.8
90012452003 41.319154   -73.479132  95.7
90012453001 41.293613   -73.456416  94.9
90012453003 41.284093   -73.493029  84.6
90012454001 41.263554   -73.462508  133.7
90010716002 41.181796   -73.196349  264.1
90010714003 41.183947   -73.198804  157.9
90010714004 41.185397   -73.200341  133.1
90010716001 41.184585   -73.195373  245.4
90010719001 41.195616   -73.203213  241.3
90010719002 41.191719   -73.20067   201.4
90010810001 41.222401   -73.155751  99.8
90012053002 41.437178   -73.396647  88.9
90012053003 41.451281   -73.413168  87.2
90012101001 41.400968   -73.458019  95.8
90012101002 41.394998   -73.449385  94.9
90012455002 41.270781   -73.52177   130
90012456001 41.360282   -73.530252  76
90012456002 41.288121   -73.507822  72.7
90012456003 41.313295   -73.528298  99.5
90010720002 41.187461   -73.206022  183.8
90010721001 41.189995   -73.216666  122.1
90010721003 41.180815   -73.216566  146.6
90010812001 41.233187   -73.117965  104.3
90012102003 41.393535   -73.440432  157.3
90012456004 41.296988   -73.522458  79.8
90012571001 41.613474   -73.503408  100.3
90012572001 41.203247   -73.202377  137.5
90012572002 41.194794   -73.192015  140
90010722002 41.195945   -73.210519  151.4
90010722003 41.193973   -73.214259  136.6
90010723001 41.203358   -73.20714   143.9
90010723002 41.198932   -73.206447  142.4
90010723003 41.203037   -73.212283  186.3
90010724001 41.208966   -73.201209  165.8
90010813001 41.246832   -73.131348  72.6
90010813003 41.246515   -73.111748  155.4
90012103003 41.402606   -73.440486  167.3
90012104002 41.390956   -73.434375  94.8
90012104004 41.381899   -73.431034  102.2
90012105001 41.369942   -73.437917  123.2
90012572003 41.195887   -73.197341  173.9
90012572004 41.198997   -73.199825  162.1
90010724002 41.209585   -73.20547   148.2
90010725001 41.212546   -73.215288  91.6
90010725002 41.208281   -73.212059  98.6
90010901002 41.287263   -73.250588  102.3
90010902003 41.266822   -73.23491   92
90012105002 41.353974   -73.458436  99
90012106001 41.383904   -73.465779  73.8
90012106002 41.382667   -73.457351  83.2
90012106003 41.387105   -73.458921  189.7
90010603003 41.211193   -73.280762  90.6
90010604001 41.1995 -73.306179  92.5
90010604002 41.181699   -73.295321  88.5
90010604003 41.171775   -73.283657  74.7
90010726004 41.222752   -73.235936  95.1
90010726005 41.211959   -73.228826  161.5
90010727001 41.225968   -73.207215  131.2
90010727002 41.214759   -73.208042  132.3
90012106004 41.390604   -73.45726   162.3
90012107012 41.399524   -73.464468  133.7
90012107013 41.396556   -73.471967  99.7
90012107021 41.386497   -73.468571  79
90010604004 41.167694   -73.309524  84.1
90010604005 41.195134   -73.325438  83.8
90010605001 41.155009   -73.2852    84.2
90010606001 41.139112   -73.283955  110.6
90010607002 41.147077   -73.261239  94.2
90010728001 41.224439   -73.198242  99.1
90010728002 41.217875   -73.197045  202.6
90010728003 41.210812   -73.195182  190.9
90010729001 41.216106   -73.185495  102.2
90010729002 41.221654   -73.19115   120.5
90010904004 41.228466   -73.191144  129.8
90010905001 41.245708   -73.153402  94.4
90012107022 41.390499   -73.47572   122
90012108003 41.395869   -73.494013  169
90010607004 41.162216   -73.266692  108.4
90010729003 41.208007   -73.192118  119.6
90010731002 41.209897   -73.173502  200.1
90010732001 41.199521   -73.157307  104
90010907002 41.292969   -73.213286  97.2
90012109002 41.422006   -73.509898  130.3
90012109003 41.408571   -73.469713  96.7
90012110002 41.427622   -73.478071  71
90010732002 41.199779   -73.15968   129.9
90010733001 41.194838   -73.161245  220.4
90010733002 41.196553   -73.167201  223.9
90010734001 41.200568   -73.177405  167.6
90010734003 41.202783   -73.185394  132.6
90011002001 41.320343   -73.199107  84.5
90011002002 41.3086 -73.220255  88
90011002004 41.331716   -73.221468  78.4
90012113001 41.445838   -73.445831  79.8
90010612001 41.179606   -73.224896  81.8
90010612002 41.181751   -73.232609  87.5
90010613001 41.175294   -73.231124  101
90010613002 41.173877   -73.239615  81.5
90010735001 41.196816   -73.182355  201
90010735002 41.193029   -73.183216  175.8
90010735003 41.19529    -73.184959  231.1
90010736001 41.194455   -73.177717  198.3
90011003002 41.341963   -73.192365  77.7
90011051001 41.233168   -73.263024  123.6
90011052002 41.285673   -73.287781  111.5
90012113003 41.441636   -73.436266  116.9
90012114001 41.430746   -73.428211  78.7
90012114002 41.447087   -73.427341  108.3
90012114003 41.422319   -73.420856  65.4
90010614002 41.167362   -73.237612  95.1
90010615001 41.154024   -73.24035   146
90010616001 41.137264   -73.264706  72.9
90010737003 41.190196   -73.163451  174.4
90010737004 41.191454   -73.168643  136.9
90010737005 41.188779   -73.168872  125.4
90010738001 41.190175   -73.175898  149.3
90010738002 41.188112   -73.176438  104.1
90011102011 41.30204    -73.07854   93.2
90011102021 41.292759   -73.089266  221.6
90011102022 41.277148   -73.094239  209
90012201003 41.450671   -73.524399  95.3
90012201004 41.464062   -73.509055  91.4
90012202001 41.494752   -73.495944  71.2
90010616002 41.131092   -73.255091  114.8
90010616003 41.126782   -73.269031  116.1
90010701001 41.155218   -73.22345   222
90010701003 41.1547 -73.228366  121.2
90010701004 41.158021   -73.229301  119.4
90010738003 41.189804   -73.178993  120.1
90010739001 41.190496   -73.1826    120
90010739002 41.187738   -73.18267   173.6
90010739003 41.186232   -73.18633   218.8
90010739004 41.190055   -73.185757  115.7
90010740001 41.182438   -73.180944  187.2
90010740002 41.181587   -73.17741   145.9
90012203001 41.521653   -73.470862  103.1
90012203002 41.487018   -73.45847   95.8
90012301002 41.442759   -73.311749  103.8
90010702001 41.161921   -73.22484   130.6
90010702002 41.163873   -73.22144   137.8
90010702003 41.15867    -73.219191  181.1
90010703001 41.160754   -73.21476   215.2
90010705001 41.167282   -73.191851  175
90010743001 41.18634    -73.159732  166.9
90010743002 41.182201   -73.158335  109
90010743003 41.180505   -73.162622  152.2
90010743004 41.178543   -73.168002  157.3
90010743005 41.181  -73.168064  143.4
90010743006 41.182831   -73.16868   122.4
90011103022 41.269651   -73.130548  88.6
90011104001 41.294908   -73.161871  111.3
90012302001 41.413873   -73.304276  93.1
90012303003 41.387196   -73.321197  118.5
90010705002 41.167522   -73.196366  213.2
90010706001 41.177971   -73.193067  236.6
90010706002 41.167732   -73.187421  227.7
90010709001 41.170459   -73.203877  159.7
90010709002 41.17138    -73.198856  186.7
90010710001 41.171339   -73.218595  126.6
90010744001 41.179957   -73.157483  135.6
90010744002 41.177069   -73.162353  133.4
90010744003 41.172159   -73.168866  185.4
90010744004 41.176011   -73.16636   169.5
90010801001 41.200673   -73.150037  105.6
90010801003 41.193386   -73.151688  140.3
90011105004 41.309581   -73.141151  77.3
90012304001 41.384815   -73.294462  118.4
90012304002 41.36671    -73.293527  94.8
90012304003 41.368872   -73.348572  194.7
90012305011 41.406865   -73.223661  89.3
90010710002 41.172463   -73.214353  184.7
90010712001 41.180827   -73.207841  133.3
90010712002 41.179002   -73.205237  206.9
90010801004 41.199783   -73.15404   140.2
90010802001 41.190012   -73.142391  106.3
90010802002 41.189527   -73.147431  86.6
90010802003 41.188494   -73.152008  121.6
90010804001 41.182524   -73.140233  153.5
90010804002 41.177371   -73.137682  151.9
90012002001 41.381013   -73.410319  87.5
90012305021 41.375831   -73.251305  105.6
90012305023 41.379858   -73.219021  96.8
90010712003 41.177009   -73.202378  168.4
90010712004 41.173824   -73.203364  197.4
90010713001 41.18072    -73.201927  184
90010713002 41.178332   -73.198693  183.5
90010714001 41.188573   -73.196834  115.9
90010714002 41.185972   -73.201774  118.1
90010805002 41.152953   -73.123918  71.8
90010806001 41.185641   -73.129554  112.4
90012003021 41.36255    -73.396786  86.7
90012003022 41.351419   -73.408962  154
90012402002 41.317929   -73.400807  91.5
90012402003 41.300946   -73.348506  126.8
90010202001 41.134991   -73.600739  118.3
90010202002 41.114341   -73.58158   84.7
90010203001 41.154604   -73.545957  90.1
90010203003 41.15133    -73.581789  109.2
90010353001 41.126492   -73.477104  191.2
90010353002 41.129396   -73.513016  221
90010354001 41.192382   -73.482245  120.4
90010354002 41.160459   -73.474248  114.7
90010354003 41.144611   -73.464233  216.9
90010354004 41.186241   -73.495502  88.6
90010503004 41.149218   -73.336642  192.9
90010503005 41.169512   -73.351917  140.6
90010504002 41.116467   -73.375013  85.9
90010505002 41.116352   -73.352404  85.4
90010203004 41.136534   -73.573863  86.2
90010205002 41.066638   -73.562444  77.2
90010425001 41.160707   -73.404989  125.9
90010425003 41.144366   -73.403332  121.1
90010426003 41.133452   -73.385111  81.7
90010505003 41.111412   -73.358066  80.8
90010505004 41.129533   -73.36223   82.9
90010551001 41.233676   -73.362879  108.9
90010206001 41.103581   -73.554734  85.2
90010206003 41.085439   -73.552623  82.5
90010426004 41.12787    -73.392559  136.8
90010427001 41.149039   -73.424079  107
90010428002 41.131288   -73.416989  91
90010551003 41.21145    -73.381718  77.7
90010551004 41.247205   -73.406188  77.1
90010552001 41.213714   -73.338138  108.3
90010552003 41.201885   -73.365519  115.7
90010208003 41.087838   -73.544622  77.2
90010209001 41.098298   -73.515074  83.6
90010428004 41.127102   -73.399138  85.3
90010429001 41.149545   -73.437497  77
90010430002 41.12977    -73.433261  106.9
90010602003 41.193534   -73.252047  60.8
90010602004 41.187197   -73.257167  141.4
90010210001 41.086533   -73.521131  112.1
90010211001 41.072121   -73.517654  101.2
90010211003 41.075939   -73.52826   78.2
90010431001 41.102395   -73.446269  83.8
90010431002 41.1173 -73.459513  73.3
90010432002 41.110378   -73.442314  92.3
90010212002 41.070902   -73.543556  89.6
90010213001 41.070755   -73.553697  110.1
90010213003 41.057543   -73.550212  98.6
90010433002 41.120549   -73.433645  95.1
90010434001 41.124754   -73.414431  91.3
90010434002 41.122855   -73.419197  87.9
90010434003 41.129448   -73.422258  98.3
90010435001 41.125176   -73.386176  144.2
90010214001 41.053676   -73.554293  202.3
90010214002 41.050584   -73.555773  176.2
90010214003 41.04669    -73.557427  103
90010214004 41.053666   -73.562879  172.1
90010215001 41.053793   -73.54926   145.9
90010215002 41.050154   -73.548156  139.8
90010435002 41.120456   -73.394265  87.9
90010435003 41.117986   -73.388516  78.1
90010436002 41.111907   -73.404062  183.2
90010437001 41.117371   -73.414574  202.5
90010215003 41.046584   -73.550538  148.7
90010215004 41.050229   -73.551746  126
90010216001 41.063583   -73.538563  185.4
90010216002 41.060054   -73.543822  132.2
90010216004 41.062798   -73.535453  124.6
90010437002 41.11312    -73.413212  213.7
90010438001 41.114109   -73.420907  167.6
90010438002 41.114952   -73.424774  122.8
90010438003 41.109739   -73.423166  149.8
90010438004 41.10928    -73.42707   137.6
90010101023 41.117859   -73.646129  87.8
90010102013 41.061299   -73.62279   157
90010217001 41.056839   -73.527159  171.4
90010217003 41.055427   -73.533343  129.1
90010217004 41.057926   -73.534384  138.6
90010217005 41.057235   -73.529757  104.5
90010218011 41.067416   -73.5255    144.2
90010439001 41.097703   -73.435218  153.8
90010439004 41.08607    -73.443137  68.4
90010440001 41.10246    -73.422491  199.8
90010102022 41.05194    -73.591855  97.6
90010103002 41.03803    -73.628652  87.4
90010218012 41.063118   -73.529794  118.4
90010218013 41.062331   -73.523699  120.1
90010218023 41.059329   -73.520307  107.8
90010219001 41.057436   -73.508325  96.8
90010440002 41.102279   -73.426726  201.9
90010440004 41.096429   -73.424339  166.7
90010440005 41.091685   -73.428074  265.9
90010441001 41.09657    -73.419621  174.2
90010441002 41.095089   -73.417375  165.8
90010103005 41.029176   -73.648761  130.3
90010220002 41.053379   -73.518227  148.5
90010221001 41.051607   -73.522784  157.5
90010442002 41.104538   -73.408893  154.1
90010442003 41.100721   -73.407695  121.1
90010105004 41.018874   -73.641155  144.3
90010221002 41.046457   -73.522742  133.3
90010221003 41.039903   -73.52882   126.5
90010223001 41.038742   -73.54947   135.6
90010223002 41.0331 -73.548214  78.3"


ny2 <- read.table(textConnection(mytext), sep = " ",
                  check.names = FALSE,
                  strip.white = TRUE,
                  header = TRUE)

names(ny2) <- c('id','lat','long','prediction')
us.states <- map_data("state")
plot.states <- c('connecticut') # subset to Connecticut for ease of use in this example

p <- ggplot() +
    geom_polygon(data = us.states[us.states$region %in% plot.states, ],
                 aes(x = long, y = lat, group = group), 
                 colour = "white", fill = "lightblue") +
    geom_point(data = ny2, aes(x = long, y = lat, 
                 colour = prediction), group = NULL) +
    stat_density2d(data = ny2, aes(x = long, y = lat), size = 0.02) +
    coord_map() +
    theme()

print(p)