Getting list of currently active managed threads in .NET?
Solution 1:
If you're willing to replace your application's Thread
creations with another wrapper class, said wrapper class can track the active and inactive Thread
s for you. Here's a minimal workable shell of such a wrapper:
namespace ThreadTracker
{
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Threading;
public class TrackedThread
{
private static readonly IList<Thread> threadList = new List<Thread>();
private readonly Thread thread;
private readonly ParameterizedThreadStart start1;
private readonly ThreadStart start2;
public TrackedThread(ParameterizedThreadStart start)
{
this.start1 = start;
this.thread = new Thread(this.StartThreadParameterized);
lock (threadList)
{
threadList.Add(this.thread);
}
}
public TrackedThread(ThreadStart start)
{
this.start2 = start;
this.thread = new Thread(this.StartThread);
lock (threadList)
{
threadList.Add(this.thread);
}
}
public TrackedThread(ParameterizedThreadStart start, int maxStackSize)
{
this.start1 = start;
this.thread = new Thread(this.StartThreadParameterized, maxStackSize);
lock (threadList)
{
threadList.Add(this.thread);
}
}
public TrackedThread(ThreadStart start, int maxStackSize)
{
this.start2 = start;
this.thread = new Thread(this.StartThread, maxStackSize);
lock (threadList)
{
threadList.Add(this.thread);
}
}
public static int Count
{
get
{
lock (threadList)
{
return threadList.Count;
}
}
}
public static IEnumerable<Thread> ThreadList
{
get
{
lock (threadList)
{
return new ReadOnlyCollection<Thread>(threadList);
}
}
}
// either: (a) expose the thread object itself via a property or,
// (b) expose the other Thread public methods you need to replicate.
// This example uses (a).
public Thread Thread
{
get
{
return this.thread;
}
}
private void StartThreadParameterized(object obj)
{
try
{
this.start1(obj);
}
finally
{
lock (threadList)
{
threadList.Remove(this.thread);
}
}
}
private void StartThread()
{
try
{
this.start2();
}
finally
{
lock (threadList)
{
threadList.Remove(this.thread);
}
}
}
}
}
and a quick test driver of it (note I do not iterate over the list of threads, merely get the count in the list):
namespace ThreadTracker
{
using System;
using System.Threading;
internal static class Program
{
private static void Main()
{
var thread1 = new TrackedThread(DoNothingForFiveSeconds);
var thread2 = new TrackedThread(DoNothingForTenSeconds);
var thread3 = new TrackedThread(DoNothingForSomeTime);
thread1.Thread.Start();
thread2.Thread.Start();
thread3.Thread.Start(15);
while (TrackedThread.Count > 0)
{
Console.WriteLine(TrackedThread.Count);
}
Console.ReadLine();
}
private static void DoNothingForFiveSeconds()
{
Thread.Sleep(5000);
}
private static void DoNothingForTenSeconds()
{
Thread.Sleep(10000);
}
private static void DoNothingForSomeTime(object seconds)
{
Thread.Sleep(1000 * (int)seconds);
}
}
}
Not sure if you can go such a route, but it will accomplish the goal if you're able to incorporate at an early stage of development.
Solution 2:
Is it feasible for you to store thread information in a lookup as you create each thread in your application?
As each thread starts, you can get its ID using AppDomain.GetCurrentThreadId()
. Later, you can use this to cross reference with the data returned from Process.Threads
.