I would like to understand how the built-in function property works. What confuses me is that property can also be used as a decorator, but it only takes arguments when used as a built-in function and not when used as a decorator.

This example is from the documentation:

class C:
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x
    def setx(self, value):
        self._x = value
    def delx(self):
        del self._x
    x = property(getx, setx, delx, "I'm the 'x' property.")

property's arguments are getx, setx, delx and a doc string.

In the code below property is used as a decorator. The object of it is the x function, but in the code above there is no place for an object function in the arguments.

class C:
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

How are the x.setter and x.deleter decorators created in this case?


The property() function returns a special descriptor object:

>>> property()
<property object at 0x10ff07940>

It is this object that has extra methods:

>>> property().getter
<built-in method getter of property object at 0x10ff07998>
>>> property().setter
<built-in method setter of property object at 0x10ff07940>
>>> property().deleter
<built-in method deleter of property object at 0x10ff07998>

These act as decorators too. They return a new property object:

>>> property().getter(None)
<property object at 0x10ff079f0>

that is a copy of the old object, but with one of the functions replaced.

Remember, that the @decorator syntax is just syntactic sugar; the syntax:

@property
def foo(self): return self._foo

really means the same thing as

def foo(self): return self._foo
foo = property(foo)

so foo the function is replaced by property(foo), which we saw above is a special object. Then when you use @foo.setter(), what you are doing is call that property().setter method I showed you above, which returns a new copy of the property, but this time with the setter function replaced with the decorated method.

The following sequence also creates a full-on property, by using those decorator methods.

First we create some functions and a property object with just a getter:

>>> def getter(self): print('Get!')
... 
>>> def setter(self, value): print('Set to {!r}!'.format(value))
... 
>>> def deleter(self): print('Delete!')
... 
>>> prop = property(getter)
>>> prop.fget is getter
True
>>> prop.fset is None
True
>>> prop.fdel is None
True

Next we use the .setter() method to add a setter:

>>> prop = prop.setter(setter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is None
True

Last we add a deleter with the .deleter() method:

>>> prop = prop.deleter(deleter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is deleter
True

Last but not least, the property object acts as a descriptor object, so it has .__get__(), .__set__() and .__delete__() methods to hook into instance attribute getting, setting and deleting:

>>> class Foo: pass
... 
>>> prop.__get__(Foo(), Foo)
Get!
>>> prop.__set__(Foo(), 'bar')
Set to 'bar'!
>>> prop.__delete__(Foo())
Delete!

The Descriptor Howto includes a pure Python sample implementation of the property() type:

class Property:
    "Emulate PyProperty_Type() in Objects/descrobject.c"

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

Documentation says it's just a shortcut for creating readonly properties. So

@property
def x(self):
    return self._x

is equivalent to

def getx(self):
    return self._x
x = property(getx)

Here is a minimal example of how @property can be implemented:

class Thing:
    def __init__(self, my_word):
        self._word = my_word 
    @property
    def word(self):
        return self._word

>>> print( Thing('ok').word )
'ok'

Otherwise word remains a method instead of a property.

class Thing:
    def __init__(self, my_word):
        self._word = my_word
    def word(self):
        return self._word

>>> print( Thing('ok').word() )
'ok'

The first part is simple:

@property
def x(self): ...

is the same as

def x(self): ...
x = property(x)
  • which, in turn, is the simplified syntax for creating a property with just a getter.

The next step would be to extend this property with a setter and a deleter. And this happens with the appropriate methods:

@x.setter
def x(self, value): ...

returns a new property which inherits everything from the old x plus the given setter.

x.deleter works the same way.


Below is another example on how @property can help when one has to refactor code which is taken from here (I only summarize it below):

Imagine you created a class Money like this:

class Money:
    def __init__(self, dollars, cents):
        self.dollars = dollars
        self.cents = cents

and an user creates a library depending on this class where he/she uses e.g.

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

Now let's suppose you decide to change your Money class and get rid of the dollars and cents attributes but instead decide to only track the total amount of cents:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

If the above mentioned user now tries to run his/her library as before

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))

it will result in an error

AttributeError: 'Money' object has no attribute 'dollars'

That means that now everyone who relies on your original Money class would have to change all lines of code where dollars and cents are used which can be very painful... So, how could this be avoided? By using @property!

That is how:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

    # Getter and setter for dollars...
    @property
    def dollars(self):
        return self.total_cents // 100

    @dollars.setter
    def dollars(self, new_dollars):
        self.total_cents = 100 * new_dollars + self.cents

    # And the getter and setter for cents.
    @property
    def cents(self):
        return self.total_cents % 100

    @cents.setter
    def cents(self, new_cents):
        self.total_cents = 100 * self.dollars + new_cents

when we now call from our library

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

it will work as expected and we did not have to change a single line of code in our library! In fact, we would not even have to know that the library we depend on changed.

Also the setter works fine:

money.dollars += 2
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 12 cents.

money.cents += 10
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 22 cents.

You can use @property also in abstract classes; I give a minimal example here.