Tail bounds for maximum of sub-Gaussian random variables
Solution 1:
I'm not sure but I think this works. Applying the union bound directly gives. \begin{align} \mathbb{P}(\max_i |X_i| > \sqrt{2\log(2n)} + t) &\le 2n \exp\left( -(\sqrt{2\log(2n)}+t)^2/2 \right)\\ &= 2n \exp(-\log (2n) - t\sqrt{2 \log(2n)} - t^2/2)\\ &\le e^{-t\sqrt{2 \log(2n)}} e^{-t^2/2}\\ &\le e^{-t^2/2} \end{align} This is tighter than the bound given in the post I linked in my question, so maybe there I've made a mistake...
Solution 2:
I needed something along those lines recently and didn't have a specific reference to cite, so here is a proof of a self-contained statement implying yours.
Theorem. Let $X_1,...,X_n$ be independent $\sigma^2$-subgaussian random variables. Then $$ \mathbb{E}[\max_{1\leq i\leq n} X_i] \leq \sqrt{2\sigma^2\log n} \tag{1} $$ and, for every $t>0$, $$ \mathbb{P}\!\left\{\max_{1\leq i\leq n} X_i \geq \sqrt{2\sigma^2(\log n + t)}\right\} \leq e^{-t}\,. \tag{2} $$
Proof. The first part is quite standard: by Jensen's inequality, monotonicity of $\exp$, and $\sigma^2$-subgaussianity, we have, for every $\lambda \in \mathbb{R}$, $$ e^{\lambda \mathbb{E}[\max_{1\leq i\leq n} X_i]} \leq \mathbb{E}e^{\lambda \max_{1\leq i\leq n} X_i} = \max_{1\leq i\leq n}\mathbb{E}e^{\lambda X_i} \leq \sum_{i=1}^n\mathbb{E}e^{\lambda X_i} \leq n e^{\frac{\sigma^2\lambda^2}{2}} $$ so, taking logarithms and reorganizing, we have $$ \mathbb{E}[\max_{1\leq i\leq n} X_i] \leq \frac{1}{\lambda}\ln n + \frac{\lambda \sigma^2}{2}\,. $$ Choosing $\lambda := \sqrt{\frac{2\ln n}{\sigma^2}}$ proves (1). ${}$ Turning to (2), let $u := \sqrt{2\sigma^2(\log n + t)}$. We have $$ \mathbb{P}\{ \max_{1\leq i\leq n} X_i \geq u \} = \mathbb{P}\{ \exists i,\; X_i \geq u \} \leq \sum_{i=1}^n \mathbb{P}\{ X_i \geq u \} \leq n e^{-\frac{u^2}{2\sigma^2}} = e^{-t} $$ the last equality recalling our setting of $u$. $\square$
Here is now an immediate corollary:
Corollary. Let $X_1,...,X_n$ be independent $\sigma^2$-subgaussian random variables. Then, for every $u>0$, $$ \mathbb{P}\!\left\{\max_{1\leq i\leq n} X_i \geq \sqrt{2\sigma^2\log n}+ u \right\} \leq e^{-\frac{u^2}{2\sigma^2}}\,. \tag{3} $$
Proof. For any $u>0$, $$ \mathbb{P}\!\left\{\max_{1\leq i\leq n} X_i \geq \sqrt{2\sigma^2\log n} + u \right\} \leq e^{-\frac{u^2}{2\sigma^2} - u\sqrt{\frac{2\log n}{\sigma^2}}} \leq e^{-\frac{u^2}{2\sigma^2}}, $$ the inequality by choosing $t := \frac{u^2}{2\sigma^2} + u\sqrt{\frac{2\log n}{\sigma^2}}$ and using (2). $\square$
More: the slides of some lecture notes by John Duchi.