How can I obtain the element-wise logical NOT of a pandas Series?
I have a pandas Series
object containing boolean values. How can I get a series containing the logical NOT
of each value?
For example, consider a series containing:
True
True
True
False
The series I'd like to get would contain:
False
False
False
True
This seems like it should be reasonably simple, but apparently I've misplaced my mojo =(
Solution 1:
To invert a boolean Series, use ~s
:
In [7]: s = pd.Series([True, True, False, True])
In [8]: ~s
Out[8]:
0 False
1 False
2 True
3 False
dtype: bool
Using Python2.7, NumPy 1.8.0, Pandas 0.13.1:
In [119]: s = pd.Series([True, True, False, True]*10000)
In [10]: %timeit np.invert(s)
10000 loops, best of 3: 91.8 µs per loop
In [11]: %timeit ~s
10000 loops, best of 3: 73.5 µs per loop
In [12]: %timeit (-s)
10000 loops, best of 3: 73.5 µs per loop
As of Pandas 0.13.0, Series are no longer subclasses of numpy.ndarray
; they are now subclasses of pd.NDFrame
. This might have something to do with why np.invert(s)
is no longer as fast as ~s
or -s
.
Caveat: timeit
results may vary depending on many factors including hardware, compiler, OS, Python, NumPy and Pandas versions.
Solution 2:
@unutbu's answer is spot on, just wanted to add a warning that your mask needs to be dtype bool, not 'object'. Ie your mask can't have ever had any nan's. See here - even if your mask is nan-free now, it will remain 'object' type.
The inverse of an 'object' series won't throw an error, instead you'll get a garbage mask of ints that won't work as you expect.
In[1]: df = pd.DataFrame({'A':[True, False, np.nan], 'B':[True, False, True]})
In[2]: df.dropna(inplace=True)
In[3]: df['A']
Out[3]:
0 True
1 False
Name: A, dtype object
In[4]: ~df['A']
Out[4]:
0 -2
0 -1
Name: A, dtype object
After speaking with colleagues about this one I have an explanation: It looks like pandas is reverting to the bitwise operator:
In [1]: ~True
Out[1]: -2
As @geher says, you can convert it to bool with astype before you inverse with ~
~df['A'].astype(bool)
0 False
1 True
Name: A, dtype: bool
(~df['A']).astype(bool)
0 True
1 True
Name: A, dtype: bool
Solution 3:
I just give it a shot:
In [9]: s = Series([True, True, True, False])
In [10]: s
Out[10]:
0 True
1 True
2 True
3 False
In [11]: -s
Out[11]:
0 False
1 False
2 False
3 True